
AN ITERATIVE METHOD FOR CONSTRAINED DYNAMIC
PROBLEMS – A CASE STUDY

J. Wang1, G. Hou2, and C. Modnak3

1Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA
Email: j3wang@odu.edu

2Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk,
VA 23529, USA

Email: ghou@odu.edu
3Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA

Email: cmodn001@odu.edu

Received 6 May 2011; accepted 18 May 2011

ABSTRACT

We propose an iterative scheme to numerically solve a class of constrained dynamic problems
in the form of differential-algebraic equations. This algorithm allows efficient decoupling of
the solution procedure and can be combined with any differential equation solvers. We use
a simple, yet nontrivial, example to demonstrate the application of this method. Through both
mathematical analysis and numerical tests, we show that this iterative scheme achieves fast con-
vergence and ensures an accurate and efficient solution procedure for such constrained dynamic
problems.

Keywords: constrained dynamic problem, iterative algorithm, ODE solver

1 INTRODUCTION

In this paper, we are concerned with numerical calculation of constrained dynamic problems in
the form of A1 0 B1

0 A2 B2

D1 D2 0

 ẍ
ÿ
λ

+

 C1 0 0
0 C2 0
0 0 0

 x
y
λ

 =

 r1
r2
d

 (1)

Here x and y are vectors with the same or different dimensions, Aj and Cj (j = 1, 2) are square
matrices, and rj (j = 1, 2) are vectors, of corresponding dimensions; λ can be either a vector
or scalar depending on the specific constraints, and Bj and Dj (j = 1, 2) are corresponding
matrices or vectors. We have used the double dots to denote the second derivative with respect
to time. Equation (1) constitutes a typical system of differential-algebraic equations (Kunkel
and Mehrmann 2006). Such problems arise in many areas of science and engineering such
as multi-body dynamics (Haug 1992) and fluid-structure interactions (Unger et al. 2007). In
addition, formulation similar to equation (1) can be found in the two-field structural domain
decomposition methods (Park and Felippa 2000), as well as in the simultaneous analysis and

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

2 J. Wang et al.

constrained optimization problems (Knoll and Keyes 2004). In many of these applications,
λ typically represents the so-called Lagrange multipliers (Belegundu and Chandrupatla 1999)
which reflect the nature of the constraints.

Difficulties of numerical study on these problems stem from the algebraic constraints which
impose additional challenges to traditional ordinary differential equation (ODE) solvers. It has
been reported (Hairer and Wanner 1996; Kunkel and Mehrmann 2006) that the numerical solu-
tion may easily deviate from the exact solution if the constraints are not carefully enforced dur-
ing numerical integration. It is also observed that many differential-algebraic systems behave
like highly stiff differential equations which demand special treatment; in particular, extremely
small stepsizes are required if explicit time-marching methods (such as regular Runge-Kutta)
are employed. Hence, it is commonly believed that such dynamic problems should be solved by
implicit methods, among which the backward difference formulas (Ascher and Petzold 1998;
Brenan et al. 1989) and the implicit Runge-Kutta methods (Roche 1989) have been the most
successful numerical approaches to solve differential-algebraic equations. Based on these two
methods and their variations, several commercial or freely-available numerical codes have been
developed, including the DASSL (Brenan et al. 1989), RADAU5 (Hairer and Wanner 1996),
and MEBDFDAE (Cash 2000). Nevertheless, these fully implicit methods in general make the
computation expensive, especially when large-scale problems are encountered and high-order
accuracy is needed. In addition, there are several more sophisticated, and more specialized,
numerical methods developed for differential-algebraic equations (see, e.g., Fox et al. 2000;
Gear 1971; Rangan 2003). Stability issues of some of these numerical have also been investi-
gated (see, e.g., Arnold 1993; Prothero and Robinson 1974). We refer to (Cash 2003; Hairer
and Wanner 1996) for comprehensive reviews on numerical methods for differential-algebraic
equations.

In this paper, we introduce an iterative method which effectively overcomes some of the afore-
mentioned limitations in numerical study of constrained dynamic problems, and which allows
simple, traditional ODE solvers to be used with success. Essentially, this method decouples
the computation of x and y , while explicitly enforces the constraints at each time step. The
iterative scheme is local in the sense that the iterations are performed on each single step, say,
from tn to tn+1 , instead of the global time domain. This feature ensures fast convergence
and high accuracy, and possesses the flexibility that it can be combined with any ODE solvers.
Furthermore, this iterative approach allows different ODE solvers and even different meshes
to be used for x and y , so as to meet their (usually different) computational requirements.
In this paper, we will focus our attention on a relatively simple, yet nontrivial, example to
demonstrate the analysis and application of this method. More general numerical formulation
and convergence analysis will be presented in another study.

The remainder of the present paper is organized as follows. In Section 2, the iterative algorithm
is presented and the procedure of implementation is described. In Section 3, an example is
presented as a case study to illustrate the application of the proposed method, followed by a
detailed convergence analysis in Section 4. Results from numerical simulation are presented
in Section 5 to verify the algorithm and analysis. Finally, conclusions are drawn and some
discussion is made in Section 6.

2 ITERATIVE ALGORITHM

The iterative method proposed in this paper is based on a natural splitting of the leading co-
efficient matrix in equation (1). Specifically, the leading terms (i.e., those with the second

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 3

derivatives of the unknowns) in equation (1) are decomposed as A1 0 0
0 A2 B2

0 D2 0

 ẍ
ÿ
λ

+

 0 0 B1

0 0 0
D1 0 0

 ẍ
ÿ
λ

 (2)

Suppose that at t = tn , the variables x , y as well as their time derivatives, and λ, are all known.
We advance the solution from t = tn to t = tn+1 through an iterative procedure presented
below. The interval [tn , tn+1] is partitioned into a set of subintervals. Assume the ith iterative
solution is already obtained on [tn , tn+1] . At the (i+ 1)th iteration, we solve the system A1 0 0

0 A2 B2

0 D2 0

 ẍ i+1

ÿ i+1

λi+1

+
 0 0 B1

0 0 0
D1 0 0

 ẍ i

ÿ i

λi+1

+
 C1 0 0

0 C2 0
0 0 0

 x i+1

y i+1

λi+1

 =

 r1
r2
d

which yields two separated equations,[
A2 B2

D2 0

] [
ÿ i+1

λi+1

]
+

[
C2 0
0 0

] [
y i+1

λi+1

]
=

[
r2

d −D1ẍ
i

]
(3)

and

A1 ẍ
i+1 + C1 x

i+1 = r1 −B1λ
i+1 (4)

Equations (3) and (4) have decoupled the computation of x and y so that they can be solved
separately at each time step. This builds the ground for a local iterative procedure to advance
the solution from t = tn to t = tn+1 . For i > 0 , we carry out the following steps to obtain the
solution at the (i+ 1)th iteration.

Step 1 Compute yi+1 and λi+1 on [tn , tn+1] by solving equation (3) with the initial condi-
tions

yi+1(tn) = y(tn) , ẏi+1(tn) = ẏ(tn) (5)

The numerical solution of (3)(5) is then reported at t = tn+1 . We calculate the backward errors

εi+1
y =

∣∣∣∣y i+1(tn+1)− y i(tn+1)
∣∣∣∣ (6)

and

εi+1
λ =

∣∣∣∣λi+1(tn+1)− λi(tn+1)
∣∣∣∣ (7)

Step 2 Compute xi+1 on [tn , tn+1] by solving equation (4) with the initial conditions

xi+1(tn) = x(tn) , ẋi+1(tn) = ẋ(tn) (8)

Then calculate the backward error

εi+1
x =

∣∣∣∣x i+1(tn+1)− x i(tn+1)
∣∣∣∣ (9)

Step 3 Check the convergence. If

max
(
εi+1
x , εi+1

y , εi+1
λ

)
≤ ε0 (10)

where ε0 is the given error tolerance, then the convergence has been achieved. Start the iterative
procedure for the next time step, n = n+ 1 . Otherwise, set i = i+ 1 and return to Step 1.

In summary, we propose an iterative method to numerically solve a class of constrained dynamic
problems in the form of (1). This method offers the following advantages:

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

4 J. Wang et al.

• The algorithm is straightforward to implement, and can be easily combined with any ODE
solvers.

• The algorithm ensures the accuracy of the solution by explicitly enforcing the algebraic
constraint at each time step. This point will be demonstrated by rigorous error analysis
and numerical simulation results through our case study.

• The solution procedures for x and y are decoupled, which allows us to employ different
ODE solvers and even different meshes for x and y . Interpolations can be applied in case
the meshes for x and y do not coincide. Such a decoupling technique and the flexibility
are important in many practical applications, where the equations for x and y have dif-
ferent computational requirements in terms of accuracy and efficiency and thus are best
solved by respective disciplinary codes.

3 AN EXAMPLE

To demonstrate the application of the proposed iterative algorithm, we consider the following
model problem as a case study:([

4 1
1 3

]{
ẍ1

ẍ2

}
−

[
2 1
1 2

]{
x1

x2

}
−

{
6
7

})T {
δx1

δx2

}
= 0 (11)

([
5 2
2 4

]{
ÿ1
ÿ2

}
−
[
1 2
0 2

]{
y1
y2

}
−
{

10
4

})T {
δy1
δy2

}
= 0 (12)

for arbitrary δxj and δyj (j = 1, 2), but subject to the constraint

x2 = 2y1 (13)

This problem can be regarded as a simplified modeling of a two-structure joint system where
the structural properties (the Young’s modulus and Poisson ratio; see Haug 1992) and external
forcing strength are all set to idealized numbers. Initially the displacements and velocities are
all zero; i.e., the initial conditions of this problem are given as

x1 (0) = ẋ1 (0) = 0 , x2 (0) = ẋ2 (0) = 0 (14)
y1 (0) = ẏ1 (0) = 0 , y2 (0) = ẏ2 (0) = 0 (15)

Based upon the Theorem of Lagrange Multipliers (Belegundu and Chandrupatla 1999), we
obtain[
4 1
1 3

]{
ẍ1

ẍ2

}
=

[
2 1
1 2

]{
x1

x2

}
+

{
6
7

}
−
{

0
λ

}
(16)

[
5 2
2 4

]{
ÿ1
ÿ2

}
=

[
1 2
0 2

]{
y1
y2

}
+

{
10
4

}
+

{
2λ
0

}
(17)

with the constraints:

ẍ2 (t) = 2ÿ1 (t) , ẋ2 (t) = 2ẏ1 (t) , x2 (t) = 2y1 (t) (18)

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 5

Using equations (16-18), we can assemble a differential-algebraic system in the form of
4 1 0 0 0
1 3 0 0 1
0 0 5 2 −2
0 0 2 4 0
0 1 −2 0 0

ẍ1

ẍ2

ÿ1
ÿ2
λ

 =

2 1 0 0 0
1 2 0 0 0
0 0 1 2 0
0 0 0 2 0
0 0 0 0 0

x1

x2

y1
y2
λ

+

6
7
10
4
0

 (19)

We will apply the numerical formulation (3) and (4) to solve equation (19). This means that we
first solve the equation 5 2 −2

2 4 0
−2 0 0

ÿi+1
1

ÿi+1
2

λi+1

−

 1 2 0
0 2 0
0 0 0

yi+1
1

yi+1
2

λi+1

 =

10
4

−ẍi
2

 (20)

to update yi+1 and λi+1 on [tn , tn+1] . Then we compute xi+1 by solving[
4 1
1 3

]{
ẍi+1
1

ẍi+1
2

}
=

[
2 1
1 2

]{
xi+1
1

xi+1
2

}
+

{
6
7

}
−

{
0

λi+1

}
(21)

We note that equation (20) can be further simplified by employing an LU decomposition ap-
proach (Golub and Van Loan 1996). The details are provided in the Appendix. As a result
of equations (72) and (73), the computation of y and λ can also be separated. Based on the
procedure described in Section 2, the iterative scheme will be implemented by the following
steps.

Step 1 Compute yi+1 on [tn , tn+1] by solving equation (72),
ÿi+1
1 =

1

2
ẍi
2

ÿi+1
2 = −1

2
yi+1
2 + 1− 1

4
ẍi
2

(22)

with the initial conditions (5). Note that ẍi
2 is known from the previous iteration. Particularly,

to start the first iteration with i = 0 , an initial guess is made by setting

x0(t) = x(tn) , ẍ0(t) = ẍ(tn) , for tn ≤ t ≤ tn+1 (23)

The solution of (22) and (5) is then reported at t = tn+1 . For i > 0 , we calculate the backward
error εi+1

y according to (6).

Step 2 The Lagrange multiplier λi+1 for tn ≤ t ≤ tn+1 is updated using equation (73),

λi+1 =
1

2
yi+1
1 +

1

2
yi+1
2 − 4 + ẍi

2 (24)

For i > 0 , we calculate the backward error εi+1
λ according to (7).

Step 3 Based on equation (21), the value of x i+1 on [tn , tn+1] can then be found by solving{
ẍi+1
1

ẍi+1
2

}
=

1

11

[
5 1
2 7

]{
xi+1
1

xi+1
2

}
+

{
1
2

}
+

1

11

{
1
−4

}
λi+1 (25)

with the initial conditions (8). The solution is then reported at t = tn+1 . For i > 0 , we calculate
the backward error εi+1

x according to (9).

Step 4 Check the convergence based on the criterion in (10).

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

6 J. Wang et al.

4 CONVERGENCE ANALYSIS

In this section, we show the convergence of the proposed iterative method for the model problem
through a careful error analysis. Let us define the error functions

eixj
(t) = xj(t)− xi

j(t)

eiyj(t) = yj(t)− yij(t)

eiλ(t) = λ(t)− λi(t)

for j = 1, 2 and t ∈ [tn , tn+1] . They measure the difference between the exact solution and
the numerical solution at the ith iteration. We will focus our attention on numerical errors due
to the iterative procedure. For convenience of discussion, we assume the numerical solution at
t = tn is exact, i.e.,

eixj
(tn) = 0 , ėixj

(tn) = 0 (26)

eiyj(tn) = 0 , ėiyj(tn) = 0 (27)

for j = 1, 2 and i = 0, 1, 2, · · · . To quantify the errors, we will employ the maximum norm,
denoted by || · || , for any continuous function f on the interval [tn , tn+1] ,

||f || = max
tn≤t≤tn+1

|f(t)|

Suppose that the ith iterative solution is known. At the (i + 1)th iteration, The functions ei+1
yj

and ei+1
λ satisfy the following differential-algebraic equations, according to equations (22) and

(24),

ëi+1
y1

=
1

2
ëix2

(28)

ëi+1
y2

= −1

2
ei+1
y2

− 1

4
ëix2

(29)

ei+1
λ =

1

2
ei+1
y1

+
1

2
ei+1
y2

+ ëix2
(30)

With the initial condition (27), the solution to equations (28)-(30) can be easily found as

ei+1
y1

=
1

2
eix2

(31)

ei+1
y2

= −1

4
eix2

+
1

4
√
2

∫ t

tn

eix2
(τ) sin

(t− τ√
2

)
dτ (32)

ei+1
λ =

1

8
eix2

+ ëix2
+

1

8
√
2

∫ t

tn

eix2
(τ) sin

(t− τ√
2

)
dτ (33)

Note that

√
2

∫ t

tn

sin
(t− τ√

2

)
dτ = 1− cos

(t− tn√
2

)
=

1

2!

1

2
(t− tn)

2 − 1

4!

1

4
(t− tn)

4 + · · ·

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 7

We thus can easily obtain the estimates

||ei+1
y1

|| =
1

2
||eix2

|| (34)

||ei+1
y2

|| ≤
(1
4
+

1

32
∆t2

)
||eix2

||+O(∆t4) (35)

||ei+1
λ || ≤

(1
8
+

1

64
∆t2

)
||eix2

||+ ||ëix2
||+O(∆t4) (36)

Based on (25), the error functions ei+1
xj

satisfy the differential equations{
ëi+1
x1

ëi+1
x2

}
= A

{
ei+1
x1

ei+1
x2

}
+

1

11

{
ei+1
λ

−4 ei+1
λ

}
(37)

where

A =
1

11

[
5 1
2 7

]
The Jordan Canonical Form of A is given by

D =

[
r1

r2

]
=

1

11

[
6−

√
3

6 +
√
3

]
Let P =

(
pij

)
2×2

be an invertible matrix such that D = P AP−1 . Let also Q =
(
qij

)
2×2

=

P−1 denotes the inverse of P . With the initial condition (26), the solution of (37) is given by

ei+1
x1

=
q11√
r1

∫ t

tn

f1(τ) sinh[
√
r1 (t− τ)] dτ +

q12√
r2

∫ t

tn

f2(τ) sinh[
√
r2 (t− τ)] dτ (38)

ei+1
x2

=
q21√
r1

∫ t

tn

f1(τ) sinh[
√
r1 (t− τ)] dτ +

q22√
r2

∫ t

tn

f2(τ) sinh[
√
r2 (t− τ)] dτ (39)

where

f1(τ) =
1

11

(
p11 − 4 p12

)
ei+1
λ (τ)

f2(τ) =
1

11

(
p21 − 4 p22

)
ei+1
λ (τ) (40)

It is straightforward to find that

ëi+1
x2

=
√
r1 q21

∫ t

tn

f1(τ) sinh[
√
r1 (t− τ)] dτ + q21 f1(t) +

√
r2 q22

∫ t

tn

f2(τ) sinh[
√
r2 (t− τ)] dτ + q22 f2(t) (41)

Using equations (39)(40), we obtain

||ei+1
x2

|| ≤ 1

2
∆t2 |q21| ||f1(t)||+

1

2
∆t2 |q22| ||f2(t)||+O(∆t4)

≤ 1

22
∆t2

(
|q21| |p11 − 4 p12|+ |q22| |p21 − 4 p22|

)
||ei+1

λ ||+O(∆t4) (42)

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

8 J. Wang et al.

where we have applied the following result in the first inequality of (42),

1√
r

∫ t

tn

sinh[
√
r(t− τ)] dτ =

1

r

[
cosh[

√
r(t− tn)]−1

]
=

1

2!
(t− tn)

2+
1

4!
r(t− tn)

4+ · · ·

Using the results in (41)(42), we now have

||ëi+1
x2

|| ≤ 1

22
∆t2

(
r1 |q21| |p11 − 4 p12|+ r2 |q22| |p21 − 4 p22|

)
||ei+1

λ || +
1

11

(
|q21| |p11 − 4 p12|+ |q22| |p21 − 4 p22|

)
||ei+1

λ ||+O(∆t4) (43)

Let us denote

E =
1

22

(
r1 |q21| |p11 − 4 p12|+ r2 |q22| |p21 − 4 p22|

)
F =

1

11

(
|q21| |p11 − 4 p12|+ |q22| |p21 − 4 p22|

)
We can then combine the results in (36) and (42)(43) to obtain

||ei+1
x2

|| ≤ 1

2
∆t2 F ||ei+1

λ ||+O(∆t4)

≤ F

16
∆t2 ||eix2

||+ F

2
∆t2 ||ëix2

||+O(∆t4) (44)

and

||ëi+1
x2

|| ≤ (∆t2E + F) ||ei+1
λ ||+O(∆t4)

≤
[(E

8
+

F

64

)
∆t2 +

F

8

]
||eix2

||+ (∆t2 E + F) ||ëix2
||+O(∆t4) (45)

In a similar way, we find

||ei+1
x1

|| ≤ F̃

16
∆t2 ||eix2

||+ F̃

2
∆t2 ||ëix2

||+O(∆t4) (46)

where
F̃ =

1

11

(
|q11| |p11 − 4 p12|+ |q12| |p21 − 4 p22|

)
Now multiply both sides of (45) by a positive number s , whose value is to be determined, then
add the result to (44) to obtain

||ei+1
x2

||+ s ||ëi+1
x2

|| ≤
{ F

16
∆t2 + s

[(E
8
+

F

64

)
∆t2 +

F

8

]}
||eix2

|| +[F
2
∆t2 + s (∆t2 E + F)

]
||ëix2

||+O(∆t4 , s∆t4) (47)

Let us set

s =
F
2
∆t2 + s (∆t2 E + F)

F
16
∆t2 + s

[(
E
8
+ F

64

)
∆t2 + F

8

] (48)

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 9

This results in a quadratic equation for s ,

[(E
8
+

F

64

)
∆t2 +

F

8

]
s2 +

[
(
F

16
− E)∆t2 − F

]
s− F

2
∆t2 = 0 (49)

whose two roots can be determined by the quadratic formula. Since E > 0 , F > 0 , it is easy
to observe that equation (49) has two real roots: one positive with order O(1) , and one negative
with order O(∆t2) . Let β denote the positive root. Also denote

γ =
F

16
∆t2 + β

[(E
8
+

F

64

)
∆t2 +

F

8

]
(50)

Since β and γ are both positive and are in the order of O(1) , the combination of (47)(48) and
(50) yields

||ei+1
x2

|| ≤ ||ei+1
x2

||+ β ||ëi+1
x2

|| ≤ γ
(
||eix2

||+ β ||ëix2
||
)
+ O(∆t4)

≤ γ2
(
||ei−1

x2
||+ β ||ëi−1

x2
||
)
+ O(∆t4)

≤ · · ·
≤ γi+1

(
||e0x2

||+ β ||ë0x2
||
)
+ O(∆t4) (51)

as well as

||ëi+1
x2

|| ≤ β−1
(
||ei+1

x2
||+ β ||ëi+1

x2
||
)

≤ γi+1

β

(
||e0x2

||+ β ||ë0x2
||
)
+ O(∆t4) (52)

where e0x2
and ë0x2

measure the start-up error of the iterative procedure. Based on the results in
(34)-(36), (46) and (51)(52), it is clear that the iterative procedure is convergent if

γ < 1 (53)

where γ is defined in (50). The value of γ also measures the rate of convergence: the smaller
γ , the faster convergence. The result in (51) shows that when the convergence is achieved,
the numerical error resulting from the iterative procedure is of order O(∆t4) . Although the
truncation errors of the ODE solver are not considered in this error analysis, the estimate in (51)
does indicate that the iterative method will introduce an error of at most O(∆t4) provided the
convergence can be achieved.

It is then straightforward to carry out the algebraic evaluations for the model problem to obtain

E ≈ 0.12 , F ≈ 0.36 , β ≈ 8.00− 1.20∆t2 +O(∆t4)

and

γ ≈ 0.36 + 0.13∆t2 +O(∆t4) (54)

Hence, the iterative procedure will converge even for relatively large ∆t , though smaller values
of ∆t should be used for better accuracy. For sufficiently small ∆t , the convergence rate is
approximately 0.36 .

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

10 J. Wang et al.

i 1 2 3 4 5 6 7 8 9 10
∆t = 1.0 0.014 0.50 0.45 0.42 0.40 0.37 0.35 0.31 0.25 0.25
∆t = 0.5 0.0016 0.57

Table 1: Convergence ratios εi+1
x /εix (i = 1, 2, · · ·) with the tolerance ε0 = 10−6. For ∆t = 1.0 and

0.5 , it takes 11 and 3 iterations, respectively, to achieve the convergence.

5 NUMERICAL RESULTS

In this section, we verify the proposed iterative method by conducting numerical calculation to
the model problem. We choose the computational domain as [0, 10] . We consider different
values of ∆t in the numerical tests. Meanwhile, we divide each interval [tn , tn+1] into M
subintervals when implementing the iterative procedure. In what follows we set M = 10 unless
otherwise noted. We employ the trapezoidal rule, which is one of the most popular second-order
methods, as the ODE solver in most of these tests.

We first investigate the convergence property of the iterative method. To that end we pick a
point between 0 and 10 , say t = 2 , and record the convergence history. We find that when
∆t = 1.0 , it takes 8 iterations to achieve the convergence with a given tolerance ε0 = 10−4,
and 11 iterations for the convergence with a smaller tolerance, ε0 = 10−6. When ∆t = 0.5 ,
however, it only takes 2 and 3 iterations to satisfy the 10−4 and 10−6 requirements, respectively.
Similarly, we find that at t = 3 , it takes 8 iterations when ∆t = 1.0 , and 3 iterations when
∆t = 0.5 , to achieve the convergence with ε0 = 10−6. This clearly shows the fast convergence
of the iterative method, especially when the mesh is refined. Furthermore, we can check the
convergence rates based on the recorded convergence history. For illustration, we present the
results for x only; similar results hold for y and λ . Numerically, the convergence rate for x
can be estimated by calculating the ratios εi+1

x /εix for i = 1, 2, · · · , where εi+1
x is defined in

equation (9). Table 1 displays the calculated ratios at t = 2 with the tolerance ε0 = 10−6 for
∆t = 1.0 and 0.5 . We observe similar convergence pattern in both cases; except for i = 1 , the
ratios εi+1

x /εix (i = 2, 3, · · ·) are in a range reasonably consistent with the analytical prediction
of the convergence rate in equation (54). The differences could be attributed to the coupling
between the iterative errors and the local truncation errors from the ODE solver, the latter of
which was not considered in our convergence analysis. For ∆t = 1.0 , the ratios keep decreasing
when i (the number of iterations) is increasing, showing the error is decreasing faster and faster
until the convergence is achieved. The ratios with i = 1 are distinct from others, for both
choices of ∆t ; the much lower values in the i = 1 case indicate a vast improvement of accuracy
after the first iteration against the initial guess (see equation 23). Similar convergence results
have been obtained with various choices of ∆t and ε0 .

Next, we verify the overall accuracy of this numerical approach by checking the numerical error
at the end of the computation, t = 10 . Since the analytical solution is not available, the order
of accuracy for x can be estimated by using the Richardson extrapolation:

Rx(∆t) =

∣∣∣∣∣∣∣∣ x∆t(10)− x∆t/2(10)

x∆t/2(10)− x∆t/4(10)

∣∣∣∣∣∣∣∣
where x∆t(10) denotes the final numerical solution of x(10) with the stepsize ∆t . In a similar
way we can define Ry(∆t) and Rλ(∆t) . Table 2-a shows the values of Rx , Ry and Rλ

for two rounds of numerical runs with ∆t being 1.0 and 0.1 , respectively. We clearly see
that fully second-order accuracy is achieved in the end of the computation, which is consistent

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 11

∆t Rx(∆t) Ry(∆t) Rλ(∆t)
1.0 4.11 4.11 4.03
0.1 4.00 4.00 4.00

(a)

∆t Rx(∆t) Ry(∆t) Rλ(∆t)
1.0/M 1.99 2.01 2.01
0.1/M 2.00 2.00 2.03

(b)

Table 2: Order of accuracy for the two numerical approaches: (a) trapezoidal rule with iterations; and
(b) trapezoidal rule without iterations, where M = 10 . Results show fully second-order accuracy in part
(a), and only first-order accuracy in part (b).

∆t 0.1 0.05 0.025
x2 − 2y1 3.6 · 10−8 1.1 · 10−8 2.9 · 10−9

(a)

∆t 0.1/M 0.05/M 0.025/M 0.0125/M
x2 − 2y1 689.5 744.8 774.5 784.8

(b)

Table 3: Test of the algebraic constraint x2 = 2y1 for the two numerical approaches: (a) trapezoidal
rule with iterations; and (b) trapezoidal rule without iterations, where M = 10 . Results show that the
constraint is accurately matched in part (a), and seriously violated in part (b).

with the accuracy of the trapezoidal rule. In contrast, if the iterative procedure is not used and
the trapezoidal rule alone is applied to the model problem (correspondingly, with a stepsize
∆t/M , for a fair comparison), then only first-order accuracy can be achieved. See Table 2-b.
The degradation of accuracy, also known as the order reduction (Gourlay 1970; Prothero and
Robinson 1974), in the latter case is due to the fact that many traditional ODE solvers (such as
the trapezoidal rule) are usually unable to well maintain the algebraic constraint in the course
of time marching, thus leading to inaccurate or even completely incorrect numerical solution.
This point is further justified below.

For the model problem, the algebraic constraint is given by equation (13). To test how well this
constraint is satisfied in the numerical solution, we compute x2 − 2y1 at t = 10 for both cases:
the trapezoidal rule with or without iterations. The results are presented in Table 3. Clearly, for
the combined trapezoidal rule and iterative method, the value of x2 − 2y1 is approaching zero
with second-order convergence, confirming that the algebraic constraint is accurately matched.
In contrast, when using the trapezoidal rule alone, the value of x2 − 2y1 is in the magnitude of
several hundred (with first-order convergence measured), indicating that the numerical solution
has seriously deviated from the exact solution. The significance of using the iterative method is
thus clear: it ensures both correct and accurate numerical solution to such constrained dynamic
problems.

One more evidence is provided in Table 4, where we present the estimates for the order of
accuracy when our iterative algorithm is combined with another common ODE solver: the
second-order regular (i.e., explicit) Runge-Kutta method. We again set ∆t = 1.0 , and consider
two choices of the subintervals: M = 20 and M = 200 , respectively. Table 4 shows the
measurements at the end of computation, t = 10 , where second-order accuracy is observed for
all the variables. One minor exception is that when M = 20 , the order for λ is slightly below
two (

√
3.56 ≈ 1.89). Nevertheless, as the subintervals are refined (M = 200), almost fully

second-order accuracy (
√
3.87 ≈ 1.97) is observed for λ .

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

12 J. Wang et al.

Rx(∆t) Ry(∆t) Rλ(∆t)
∆t = 1.0 , M = 20 4.34 4.04 3.56
∆t = 1.0 , M = 200 4.68 4.36 3.87

Table 4: Order of accuracy for the iterative scheme combined with the second-order explicit Runge-
Kutta method. Results show second-order accuracy for x , y and λ .

Finally, we verify that the iterative method can be combined with different ODE solvers for
x and y , a flexibility important in many practical applications. For a simple illustration, we
apply the first-order explicit Euler method for x and the trapezoidal rule for y , combined with
the iterative procedure. We find similar results as those presented in Tables 1, 2-a and 3-a.
Particularly, we obtain in the end of the computation,

Rx ≈ 4.14 , Ry ≈ 4.09 , Rλ ≈ 4.02

with ∆t = 0.1 and ε0 = 10−6, confirming fully second-order accuracy. This shows that al-
though the Euler method is only first-order accurate, the overall accuracy can still attain second-
order by combining the Euler with the trapezoidal rule and using the proposed iterative proce-
dure. Consequently, computational effort can be saved (for x in this particular case), compared
to the previous tests with the trapezoidal rule or the Runge-Kutta method applied to both x and
y , without degrading the overall accuracy. It is to be seen if this observation holds true for other
problems and for the combination of higher-order ODE solvers.

We mention again that there are several implicit and sophisticated numerical methods for differential-
algebraic equations, such as the modified extended backward difference formulas (Cash 2000),
the implicit Runge-Kutta methods (Roche 1989), and others (e.g., Fox et al. 2000; Gear 1971;
Rangan 2003). These methods can possibly produce very accurate results for the model prob-
lem we present in this paper. Nevertheless, we emphasize the significance of our proposed
iterative algorithm is that it offers a straightforward improvement of simple, traditional ODE
solvers (such as the forward Euler, trapezoidal rule, regular Runge-Kutta, etc.) so that they can
be applied to compute challenging differential-algebraic equations. When directly and individ-
ually implemented to constrained dynamic problems, these traditional ODE solvers encounter
significant difficulty in either losing accuracy or generating incorrect solutions. In contrast,
when combined with the proposed iterative procedure, these methods can produce both correct
and accurate results. Furthermore, this combination is straightforward and there is no change to
the details of the original ODE solvers.

6 CONCLUSIONS AND DISCUSSION

We have presented an iterative method to numerically solve a class of constrained dynamic
problems in the form of differential-algebraic equations, and demonstrated the application of
this method through a case study. We have conducted a careful analysis on the convergence
of the iterative method in terms of the model problem. The analytical predictions have been
verified by numerical results.

The main advantage of this iterative method is to ensure an accurate and efficient solution pro-
cedure for challenging differential-algebraic equations based on traditional ODE solvers, with
the decoupling of the computation for x and y and with the algebraic constraints strictly main-

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 13

tained in the course of time marching. This iterative method is not an independent differential-
algebraic equation solver, in the sense that an underlying ODE solver is needed to obtain the
solution. Nevertheless, this iterative method can be easily combined with any ODE solvers,
and the implementation of the iterative procedure is straightforward. It thus allows simple and
traditional ODE solvers to be applied to constrained dynamic problems in a routine and reliable
way.

As described in Section 2, the proposed iterative method is based on splitting the leading coef-
ficient matrix in equation (1). Essentially, this means we impose the algebraic constraint on y
when decoupling the computations for x and y (see equations 3 and 4). Such splitting approach
is certainly not unique. For example, if we impose the constraint on x and split the leading
terms in equation (1) correspondingly, then we obtain A1 0 B1

0 A2 0
D1 0 0

 ẍ i+1

ÿ i+1

λi+1

+
 0 0 0

0 0 B2

0 D2 0

 ẍ i

ÿ i

λi+1

+
 C1 0 0

0 C2 0
0 0 0

 x i+1

y i+1

λi+1

 =

 r1
r2
d

which results in two separated equations,[
A1 B1

D1 0

] [
ẍ i+1

λi+1

]
+

[
C1 0
0 0

] [
x i+1

λi+1

]
=

[
r1

d −D2ÿ
i

]
(55)

and

A2 ÿ
i+1 + C2 y

i+1 = r2 −B2 λ
i+1 (56)

An iterative procedure can be similarly implemented based on equations (55) and (56). Other
iterative methods can be possibly constructed by imposing the algebraic constraint on both x
and y , with differing weights, which corresponds to a linear combination of the two iterative
formulas, (3, 4) and (55, 56). It would be interesting to ask if there is an “optimal” iterative
method that can best balance the accuracy and efficiency for constrained dynamic problems in
the form of (1). We expect the answer would depend on the choice of the underlying ODE
solver. Furthermore, such splitting techniques and iterative methods can be applied in exactly
the same way to equation (1) with time-dependent coefficients; i.e., when the coefficient ma-
trices Aj , Bj , Cj and Dj and the right-hand side vectors are all functions of t . We plan to
carefully explore these extensions in another paper.

In addition, we expect the iterative approaches can be applied to some of the nonlinear con-
strained dynamic problems. Particularly, many real-life dynamic problems from fluid-structure
interactions (Unger et al. 2007), multiple rigid body dynamics (Haug 1992), and several oth-
er scientific and engineering fields (Brenan et al. 1989; Knoll and Keyes 2004; Kunkel and
Mehrmann 2006; Park and Felippa 2000), involve second-order differential equations for un-
knowns from two different sub-systems, in the form of

F1(x, ẋ, ẍ, λ) = 0 (57)
F2(y, ẏ, ÿ, λ) = 0 (58)

subject to the constraint

G(x, y) = 0 (59)

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

14 J. Wang et al.

The functions F1 , F2 and G are generally nonlinear. Nevertheless, we can always separate
the linear parts from equations (57 - 59), and write this nonlinear system in the same form as
equation (1) where the right-hand side vector now contains all the nonlinear terms. The iterative
formulation such as (3, 4) and (55, 56) can then be similarly applied, with the nonlinear terms
r1 , r2 and d on the right side evaluated at i , the previous iterate. The coefficient matrices in
the linear parts can be adjusted if necessary, with corresponding changes on the right-hand side,
to ensure the convergence. We expect this approach works at least for problems with weak
or moderate nonlinearity, though the accuracy and stability of the algorithm will need to be
carefully investigated. This will provide another interesting topic in our future work.

7 APPENDIX

We describe the procedure to decouple equation (20) using an LU decomposition approach
(Golub and Van Loan 1996). Although the algebraic calculation is carried out for this specific
problem, the formulation is applicable to various problems of this type.

First, we note that equation (17) can be simplified as{
ÿ1
ÿ2

}
=

[
1
4

1
4

−1
8

3
8

]{
y1
y2

}
+

{
2
0

}
+

{
1
2

−1
4

}
λ (60)

Equation (20) can then be rewritten as 1 0 −1/2
0 1 1/4
−2 0 0

ÿi+1
1

ÿi+1
2

λi+1

+

 −1/4 −1/4 0
1/8 −3/8 0
0 0 0

yi+1
1

yi+1
2

λi+1

 =

2
0

−ẍi
2

 (61)

which can be cast in a standard form as[
A B
D 0

]{
v̈
λ

}
=

[
C 0
0 0

]{
v
λ

}
+

{
r
d

}
(62)

where

A =

[
1 0
0 1

]
, C =

[
−1/4 −1/4
1/8 −3/8

]
, B =

{
−1/2
1/4

}
, r =

{
2
0

}
and

D =
(
−2 0

)
, d = −ẍi

2

The LU decomposition of the leading coefficient matrix in equation (62) provides the following
relation,[
A B
D 0

]
=

[
A 0
D −DA−1B

] [
I A−1B
0 I

]
(63)

By introducing two intermediate variables, v∗ and λ∗ , equation (62) can be solved in two steps.
In the forward elimination step, we have[
A 0
D −DA−1B

]{
v∗

λ∗

}
=

[
C 0
0 0

]{
v
λ

}
+

{
r
d

}
(64)

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 15

which implies

Av∗ = Cv + r (65)

and

DA−1Bλ∗ = Dv∗ − d (66)

In the backward substitution step, we have[
I A−1B
0 I

]{
v̈
λ

}
=

{
v∗

λ∗

}
(67)

which implies

v̈ = v∗ − A−1Bλ∗ (68)

and

λ = λ∗ (69)

Substitute equations (65) and (66) into equation (68) to obtain

v̈ = v∗ − A−1B
(
DA−1B

)−1
(Dv∗ − d)

=
[
I − A−1B

(
DA−1B

)−1
D
]
A−1Cv

+
[
I − A−1B

(
DA−1B

)−1
D
]
A−1r + A−1B

(
DA−1B

)−1
d

For our problem, A = I and that helps to simplify the above equations as

v̈ =
[
I −B (DB)−1 D

]
Cv +

[
I −B (DB)−1D

]
r +B (DB)−1 d (70)

and

λ = (DB)−1DCv + (DB)−1Dr − (DB)−1 d (71)

We can then easily carry out the algebraic calculation to obtain

DB = 1 , DC =
(
1/2

1/2
)

and [
I −B (DB)−1D

]
=

[
0 0

1/2 1

]
, B (DB)−1 =

{
− 1/2
1/4

}
Therefore, we have{

ÿ1
ÿ2

}
=

[
0 0

0 −1/2

]{
y1
y2

}
+

[
0 0
1/2 1

]{
2
0

}
−
{

−1/2
1/4

}
ẍ2 (72)

and

λ =
1

2
y1 +

1

2
y2 − 4 + ẍ2 (73)

Equations (72) and (73) are used in Steps 1 and 2 of the proposed iterative algorithm applied to
the case study (see Section 3).

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

16 J. Wang et al.

8 ACKNOWLEDGMENT

This work was partially supported by the National Science Foundation (under Grant No. DMS-
0813691) and the Thomas F. and Kate Miller Jeffress Trust (under Grant No. J-964).

REFERENCES

Arnold M (1993). Stability of numerical methods for Differential-Algebraic Equations of higher
index. Applied Numerical Mathematics 13, pp. 5-14.

Ascher UM and Petzold LR (1998). Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphi-
a, USA.

Belegundu AD and Chandrupatla TR (1999). Optimization Concepts and Applications in Engi-
neering. Prentice Hall.

Brenan KE, Campbell SL and Petzold LR (1989). Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations. Elsevier Science Publishing, North-Holland.

Cash JR (2000). Modified extended backward differentiation formulae for the numerical solu-
tion of stiff initial-value problems in ODEs and DAEs. Journal of Computational and Applied
Mathematics 125, pp. 117-130.

Cash JR (2003). Efficient numerical methods for the solution of stiff initial-value problems and
differential algebraic equations. Proceedings of the Royal Society of London A 459, pp. 797-815.

Fox B, Jennings LS and Zomaya AY (2000). Numerical computation of differential-algebraic
equations for the approximation of artificial satellite trajectories and planetary ephemerides.
Journal of Applied Mechanics 67, pp. 574-580.

Gear C (1971). Simultaneous numerical solution of differential-algebraic equations. IEEE
Transactions on Circuit Theory 18, pp. 89-95.

Golub GH and Van Loan CF (1996). Matrix Computations. The Johns Hopkins University
Press.

Gourlay AR (1970). A note on trapezoidal methods for the solution of initial value problems.
Mathematics of Computation 24, pp. 629-633.

Hairer E and Wanner G (1996). Solving Ordinary Differential Equations II: Stiff and Differential
Algebraic Problems. Springer.

Haug EJ (1992). Intermediate Dynamics. Prentice Hall.

Knoll DA and Keyes DE (2004). Jacobian-free Newton-Krylov methods: A survey of approach-
es and applications. Journal of Computational Physics 193, pp. 357-397.

Kunkel P and Mehrmann V (2006). Differential-Algebraic Equations: Analysis and Numerical
Solution. European Mathematical Society Publishing House, Switzerland.

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

An Iterative Method for Constrained Dynamic Problems – A Case Study 17

Park KC and Felippa CA (2000). A variational principle for the formulations of partitioned
structural systems. International Journal for Numerical Methods in Engineering 47, pp. 395-
418.

Prothero A and Robinson A (1974). On the stability and accuracy of one-step methods for
solving stiff systems of ordinary differential equations. Mathematics of Computation 28, pp.
145-162.

Rangan A (2003). Deferred correction methods for low index differential algebraic equations.
BIT Numerical Mathematics 43, pp. 1-18.

Roche M (1989). Implicit Runge-Kutta methods for differential algebraic equations. SIAM Jour-
nal on Numerical Analysis 26, pp. 963-975.

Unger R, Haupt MC and Horst P (2007). Application of Lagrange multipliers for coupled prob-
lems in fluid and structural interactions. Computers and Structures 85, pp. 796-809.

Int. J. of Appl. Math. and Mech. 8(18): 1-17, 2012.

