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ABSTRACT

Let H be a real Hilbert space and T: H — H be a nonexpansive mapping,
f: H— H a contraction mapping with coefficient 0 < o < 1, A a strongly positive bounded
linear operator with coefficient # > 0, and 0 < y < 7 /a. It is proved that both sequences
{x,} and {w,} generated by the iterative method X, = ey f (X)) + (I — (o + ) A)TXn + Baln
and Wy = any f (W) + (I = (o + ) A)Tw, + Suun converge strongly to a fixed point
% € F(T ) which solves the variational inequality (A — yf)%,x —Xx) <0 for x € F(T).
Our results extend and improve the corresponding results of G. Marino and H.K. Xu
[A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal.
Appl. 318(2006), 43-52], and may others.

Keywords: Nonexpansive mapping, Iterative method, Variational inequality, Fixed point;
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INTRODUCTION

Iterative methods for nonexpansive mappings have recently been applied to
solve convex minimization problems; see, e.g., (Deutsch and Yamada, 1998; Xu,
2002; Xu, 2003; Yamada, 2001; Yamada, Ogura, Yamashita, and Sakaniwa, 1998)
and the references therein. A typical problem is to minimize a quadratic function
over the set of the fixed points of a nonexpansive mapping on a real Hilbert space
H:

rﬁn%(Ax,x)—(x,b), (D

where C is the fixed point set of a nonexpansive mapping T on H and b is a given
pointin H. Assume A is strongly positive; that is, there is a constant 7 >0 with the

property
(Ax,x) 2 7| x| forall xe H. ()

Recall that T:H — H is a nonexpansive if |[Tx—-Ty| < |x—y/| for all
X,y € H. The set of fixed points of T is the set F(T) = {x eH :Tx= x}.

We assume that C = F(T). It is well known that F(T) is closed convex (Geobel and
Kirk, 1990). In (Xu, 2003) [see also (Yamada, 2001)], it is proved that the sequence
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{Xn} defined by the iterative method below, with the initial guess x, e H chosen

arbitrarily,

X.., = (I —a,ATX, +a,b, n>o0, 3)
converges strongly to the unique solution of the minimization problem (1) provided
the sequence {¢,} satisfies certain conditions that will be made precise in Section 3.

On the other hand, Moudafi (2000) introduced the viscosity approximation
method for nonexpansive mappings (Xu, 2004) for further developments in both
Hilbert and Banach spaces. Let f be a contraction on H. Starting with an arbitrary

initial x, e H, define a sequence {x,} recursively by

Xp = (I =0 )TX, +0o, (X)), n=0, 4)
where {o } is a sequence in (0,1). It is proved (Moudafi, 2000; Xu, 2004) that
under a certain appropriate condition imposed on {g, }, the sequence {x }

generated by (4) strongly converges to the unique solution x* in C of the variational
inequality

<(I—f)x*,x—x*>2 0, xeC. (5)

In 2006, Marino and Xu combined the iterative method (3) with the
viscosity approximation method (4) and consider the following general iterative
method:

X, = (I —a,ATX, +a,7f(x,),  n=0. (6)
They proved that if the sequence {¢,} of parameters satisfies appropriate
conditions, then the sequence {x } generated by (6) converges strongly to the
unique solution of the variational inequality

<(A—yf)x*,x—x*> >0, xeC, (7
which is the optimality condition for the minimization problem

min —(Ax, x)— h{x),

xeC 2

where h is a potential function for y f (i.e., h'(x)=y f(x) for xe H).

The main purpose of this paper is to consider the following iteration in
a Hilbert space:

X, =y (x)+(—=(a,+B,)ATX, +5.u,, nzo0. (8)
We will prove that if the sequence {¢, }, {,} of parameters satisfies appropriate
conditions, then the sequence {x } generated by (8) converges strongly to the

unique solution of the variational inequality

(A-yf)%,%-2) <0, ze F(T). )
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PRELIMINARIES

This section collects some lemmas which will be used in the proofs for the
main results in the next section. Some of them are known; others are not hard to
derive.

Lemma 1 (Xu, 2002). Assume {a,_} is a sequence of nonnegative real numbers such
that

an+1 :(I_yn)an—’—an’ nzo’
where {7,} 1s a sequence in (0,1) and {5} is a sequence in R such that
(I) z::I 7/n = 90,

(ii) limsup, ,, &,/y, <0 or X= |5, = .
Then lim___a = 0.

n—oo 7N

Lemma 2 (Wang, 1991). Let {an}, {bn} , {Cn} be three nonnegative real sequences
satisfying the following conditions:

a,, = (1-4)a,+b,+c, vnzn,,
where n; is some nonnegative integer, {1 } < (0,1) with 2" 4, = oo,

b,/4, — 0, and X" c < oo then ¢, -0 (as n— ).

Lemma 3 (Geobel and Kirk, 1990). Let H be a Hilbert space, C a closed convex
subset of H, and T :C — C a nonexpansive mapping with F(T) = @. If {x,} 18

a sequence in C weakly converging to x and if {(1-T)x,} converges strongly to
y, then (I -T)x=y.

The following lemma is not hard to prove.

Lemma 4 (Marino and Xu, 2006). Let H be a Hilbert space, K a closed convex
subset of H, and f :H — H a contraction with coefficient 0 < <1, and A a

strongly positive linear bounded operator with coefficient 7 > 0. Then, for
0<y<7la,

(x=y.(A=yDx=(A=yD)y) 2 G-a)|x-y[".  xyeH.
Thatis, A—y f is strongly monotone with coefficient y — ya.

Recall the metric (nearest point) projection P, from a real Hilbert space H
to a closed convex subset K of H is defined as follows: given x e H, P, x is the
only point in K with the property || X— PKX" = jnf{”x - y||; yeK }

P is characterized as follows.
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Lemma 5 (Marino and Xu, 2006). Let K be a closed convex subset of a real Hilbert
space H. Given xe H and y e K. Then y = P, x if and only if there holds the

inequality
(x-y,y-1) >0, vzeK.
Lemma 6 (Marino and Xu, 2006 ). Assume A is a strongly positive linear bounded
operator on a Hilbert space H with coefficient 7 >0 and 0 < p < || A||'] . Then
||I —pA” <1-pj.

Notation. We use — for strong convergence and —— for weak
convergence.

MAIN RESULTS

Let H be a real Hilbert space, A a bounded linear operator on H , and T
a nonexpansive mapping on H (i.e., [Tx-Ty|| < ||x-y| forall x,y e H ). Assume

the set F(T) is closed convex, the nearest point projection from H onto F(T) is

well defined.
Throughout the rest of this paper, we always assume that A is strongly
positive; that is, there is a constant 7 >0 such that

<Ax,x>2 77||x||2 forall xe H. (10)
(Note: 7> 0 is throughout reserved to be the constant such that (10) holds.)

Recall also that a contraction on H is a self-mapping f of H such that

[f0-fy| < a|x-y| X,yeH,
where « €[0,1) is a constant.

Denote by [T the collection of all contraction on H; namely,

[1={f:f acontractionon H }.

Now given f ] with contraction coefficient 0 <& <1, 0<y<7/a and {u,} is
bounded sequence in H. Consider a mapping S, on H defined by

Sx=ayrfX)+(-(a,+B,)ATx+pu, forall xeH. (11)
It is easy to see that S is a contraction. Indeed, by Lemma 6, we have:

Is.-Suyl < @l 00— f ] (e + A)lITx-Ty]
(1-(7 - ra)a,)|x-y|.
Hence S, has a unique fixed point, denoted x , which uniquely solves the fixed

IN

IA

point equation

X, = a,yf(x)+(—=(a,+B,)A)TX, + S.u,. (12)
Note that x  indeed depends on f as well, but we will suppress this dependence of
x, on f for simplicity of notation throughout the rest of this paper. We will also

always use y to mean a number in (0,7 /).
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The next proposition summarizes the basic properties of {x }.

Proposition 7. Let x_be defined by (12).
(i) If {u,} is a bounded sequence then {x_} is bounded for ¢, e (0,” A||']),
(i) If ¢, >0, B, >0, and {u } is a bounded sequence then

n%"X —Tx, | = o.
a,A| < 1-a,7 by
Lemma 6.
To show (i) picka p e F(T). Then, by Lemma 6, we have
%= o[ = [0 =(a,+BIATX, = P)+a,(r F (X))~ Ap)— S, (Ap—u,)|
< =@+ BOANTX, - pl+a 7 fx) = Ap|+ A, | Ap-u, |
< (= (ay+ BN % = P+ ey T (x) = T(p)+ f(p)- Ap|
B An—u, |
< (=(a+ AN %~ pl+ra[ar|x —pll+]7 £ (p)—Ap] ]
+ 4. Ap-u,
< (-7 -ap)e)|% - pl+a, |7 f(p)-Ap|+ B, [Ap-u,|.

It follows that
1%, = p|

a7 f(P- AIDII+ o el ¢

forall ne N.
Hence {x_} is bounded, and therefore { f(x,)} and {ATx,} are also bounded.

(ii) Since ¢, — 0 and B — 0, it follows that
”Xn _Txn ” ”any f (Xn)+(| _(an +ﬂn)A)TXn +ﬂnun _Txn ”
ey f(x) = (a, + B)ATX, + B.u,|
a, |y f(x,)— AT, ||+ B, ATx, —u, || = 0, as n — oo.

IN

Our first main result below shows that {x } converges strongly as n — o to

a fixed point of T which solves some variational inequality.

Theorem 8. Let {a, }
and {x } defined by (12). Then {x,} converges strongly as n — 0 to a fixed point

, {u,} be a bounded sequence,

% of T which solves the variational inequality:
(A-yf)%,%-2) <0, ze F(T). (13)
Equivalently, we have P, o (1-A+yf ) %= X
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Proof. Firstly, we note by {x, } is a bounded sequence in a Hilbert space H, then
there exists a subsequence {xn_} of {x,} such that X, . x". By Lemma 3, we
have x* e F(T). Next, we show that the solution of the variational inequality (13) is
unique. Suppose X e F(T) and X € F(T) both are solutions to (13); then

(A-y)Z%-%) < 0 (14)
and

(A-yF)R,%=X) < 0. (15)
Adding up (14) and (15), we obtain

(A—y D)X= (A-y )%, x-%) < 0. (16)
The strong monotonicity of A—yf (Lemma 4) implies that X= X and the
uniqueness is proved. Below we use % € F(T) to denote the unique solution of (13).
Now, we show X, = x". Let ze F(T), consider

Xn_z = an(yf(xn)_AZ)-i_(l_(an+ﬂn)A)(TXn_Z)_ﬁn(AZ_un)'

Thus, we have
||xn—z||2 = a,(yf(x)—-AzX, - 2)+{(1 = (a, + B,)ANTX, — 2),X, — Z)
_ﬂn< un’Xn Z>
< (=(ap+ BN % — 2| +a, (r T (x,) - Az,x, - 2)

- B, (Az—-u,,x, - 7).
It follows that

2 a ﬂ
[x,—z| < m( yf(x,)—Az,x, —2)—- m(Az—u Xy —Z)
- (100 @2 (1@ A, -2)]
ﬂ — —
e pr R
< m[ﬂlnxn—z||2+<7/f(z)—Az,Xn—z>]
ﬂ—<AZ—U X —Z>
(a,+B,)7
Therefore,
2 a, B )
% -z < (an+ﬁn)7—aan7<yf(z) Az, X, —17)
ﬁn <AZ—Un,Xn—Z>.

(an + ﬂn)}7 —aa.y
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At this point, without loss of generality we may assume that (Az—u,,x, —z) < 0.

So we have <un - Az,x, — z> > 0. It follows that

- 2] <

_ ! (yf(2)- Az,x,—2) - 0. (17)
ay
Thus, x, — z as j — oo, since x, —— Z.

We next prove that X solves the variation inequality (13). Since

Xn = anyf(xn)—‘r(l _(an+ﬂn)A)TXn+ﬂnun9 (18)
we derive, that
(A=7f)x, = ———[(1 =@, A1 =T)x, + £, (ATx, -u,)].
an

It follows by the monotonicity of | =T for ze F(T),

((A=y )X, %, — )

—L((l —a, A1 =T)X, + B,(ATX, —U,), X, — Z)
an

= LT~ -T)zx, — 2)+ (AL =T)x,. %, - 2)
an

—ﬂ<ATxn —U,, X, —2)

a,

< (AU =T)X,, X, - z)—%(ATxn —Uy, X, —Z).

At this point, without loss of generality we may assume that
(ATX, —U,,x, —2) < 0.

So we have (u, — ATx,,x, —z) > 0. It follows that
(A= D05, -2) = [All% T, 2] >0, (19)
since || X, —TX, || — 0. In particular, we consider a subsequence {Xn } c {xn} to obtain,
(A= )X X" —z) < 0.
Thatis X" € F(T) is a solution of (13); hence X = X by uniqueness. In a summary,
we have shown that each cluster point of {x } (as n— 0) equals X. Therefore,
X, —> X as n— 0.
The variational inequality (13) can be rewritten as
([(1=A+yHR]-%x-2) 2 0, ze F(T).

This, by Lemma 5, is equivalent to the fixed point equation
Peer, (1 - A+yf) X=X,
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If { ﬂn} =( in Theorem &, we get,
Corollary 9. (Marino and Xu, 2006 ). Let z € H be the unique fixed point of the
contraction z - e,y f (z) + (I =, A)Tz. Then {z } converges strongly as n — 0 to
the unique solution Z € F(T) of the variational inequality

(A-yf)z,2-7) <0, ze F(T).

Next we study a general iterative method as follows. The initial guess W, is
selected in H arbitrarily, and the (n+1)" iterate W,,, is recursively defined by

w,, =ayrfw)+{-(a,+6,)ATW,+LuU,, n=0, (20)
where {a,} € (0,|A|), {8,} < (0,1), and {a, +B,} c [0,1) forall neN,
satisfying the following conditions:

CH a,—>0;

(C2) Xi,a, =

1 0 . a
(C3) either X7 |, —a,| < wor lim,_ 0 = 1.

Below is the second main result of this paper.

Theorem 10. Let {w,} be generated by algorithm (20) with the sequence {¢, } of

parameters satisfying conditions (C1) - (C3), {un} a bounded sequence,

2 B, < oo, and lim, Bt = (. Then {w,} converges strongly to that is

obtained Theorem 8.

Proof. Since ¢, — 0 by condition (C1), we may assume, with no loss of generality,
that o < || A||’1 for all n. We now observe that {w,} is bounded. Indeed, pick any
p e F(T) to obtain

[Wo =P = (1 = (e, + B)ATW, — p)+a, (7 f(W,)— Ap) + B, (U, — Ap)|
< V= (e + BOA[TW, = [+ e, [ 7 f (W) - Ap ||+ B, [|u, - Ap]|
< (=(ay + BN Wy = pll+ e, 7 fw) = F ()] +]7 f (p) - Ap|]
+ By |u, - Ap|
< (-a7+aay+B,7)|wW, = p|+a, |7 f(p) - Ap|+ A, |u, - Ap|
— 1-G-ana, - B, - pll+ G- ana, W

v g lete]
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It follows from induction that
W — S max W. — ,M’ K R
lw, = p| Jw, = plJ.*—
y—ay

where

K < sup{w:nel\l}.
4

As aresult, noticing ||w,,, —Tw, || < a, |7 f (w,) - ATw, |- B, | ATw, —u,

n+1 s

a,—>0, 2, f, < o, and {un} is a bounded sequence, we obtain

[W,,, —Tw, || — 0. (21)
Now, we show
[w,., —w, |- o. (22)
Consider,
W =W, || = [[(1=(a, + B)ATAW, =Tw, ) +a,7(f(w,) - f(w, )
+(a, —a, )y TWw,_)—ATw, )+ (B, - B, ), — ATw, )
+ B, (U, —u, )|

IA

(1-(e, +ﬂn);7)||wn -W,_, ||+cwcn;/||wn -W, ||+ M ’|an —an_l|
+M'|B, = B, |+ M| B,

(-G -apa)|w, -w, |+ M'(la, e, |+2|8,|+]| B..]).  23)
fw)||}:in=0}<e.

IA

where M’ < sup{ max{ | ATw,

B

By assumption, we note that ¥ (7 —ay)a, = « and

Z":10:1 M'(|an _an—1|+2|ﬂn|+|ﬂn—l|) < 0.

Hence by Lemma 1, we have |w, —-w,,, |- 0.
We now show that
[w, —Tw, || - 0. (24)
Indeed this follows from (22)
[w, =Tw, | = [w, —w,, +w,, —Tw,||
< w, =wo [+ @y W)+ (= (a, + B)ATW, + Bu, —Tw, |

W, =W, ||+ ey f (W)= (e, + B,)ATW, + B,u, |

< w, = w,,, |+ a, |7 f(w) - ATw, ||+ B, | ATw, —u, || >0, as n— .
We next show that
limsup (Tw, —W, 7 f (W) — AW) < 0, (25)

n—o0

where W is obtained in Theorem 8. To see this, we take a subsequence {Wn- } of

J

{wn } such that

lim sup (W, =W,  f () — AW) = 1_irn<wn_ —W,yf(W)—AVv>.
joe \ T

n—o
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Since {an} is bounded, there exists a subsequence {Wnk} of {an} such that

w
w, —Z and

limsup (W, — W, 7 f (W) - AW) = &im<wnk —W, y f (W) - AW).

It follows from Lemma 3 and (24) that z € F(T). Hence by the variational inequality
(13), we obtain
limsup (W, - W, y f (W) - AW) = (z-W, y f (W)— AW) < 0.

n—o

So (25) holds, by (24). Finally, we prove w, — W. To this end, we calculate

IWoo =] = [0 = (e, + B AYTW, =)+, (7 T (W,) — AR) + S, (u, — AW)’

= |1 =Ca, + BOAL [Tw, - W[+, | f (w,) = AW + 8,7 |u, - AW
+2a, (1 = (a, + B,)A)(Tw, = W), y f (w,) - AW)
+28,((1 = (a, + B,)A)(Tw, - W), u, — AW)
+2a, 8, (7 £(W,)— AW, u, — AW)

< (L=(ay+B)7) |Wo = W[ + 2|y F(w,)— AW + 5,2 |Ju, — AW
+2a, (Tw, =W,  f (W,) — AW)
= 2at, (at, + ) (A(Tw, = W), » f (W) — AW)
+ 28, (Tw, =W, u, — AW) - 28, (a, + B,) (A(Tw, — W), u, — AW)
+2a,B, (7 f(w,)— AW, u, — AW)

= (1= (a, + B)7) W =W +a,” |y f(w,)— AW|] + B, |u, - AW
+2a, (Tw, =TW, y(f (w,) - F(W)))+ 2a, (Tw, - W, y f (W) — AW)
= 2a,’ (A(Tw, =), 7 f(W,) - AW) + 23, (Tw, — W, U, — AW)
-2, (A(Tw, =), u, — AW) +2ar, 3, (7 f (W,) — AW, u, — AW)
- 2a,, (A(Tw, —W), 7 f (w,) - AW)
-2a,, (A(Tw, - W), u, — AW)

< [(1—(an+ﬂn)7) +2aan7]||wn—W||2+an2||7f(wn)—AW||2

+ B2 |u, — AW + 2a, (Tw, — W,  f (W) — AW)

—2a,” (A(Tw, = W), y f (W,) - AW)+ 23, (Tw, — W, u, — AW)
=287 (A(Tw, —W), u, — AW)+2a, B, (7 f (W,) - AW, u, — AW)
—2a,B, (A(Tw, —W), y f (w,) - AW)

-2a,8, (A(Tw, - W), u, - AW)
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< (1-2(7-ap)e, ) |w, - W[ + &, {2(Tw, - W, » f (W) - AR)

+a, |y T (w,) = AW[ = 2ar, | A(Tw, = W)|- 7 f (w,) - AW|

+a, 7 |, W b+ 4, [ {2(Tw, =, u, = AW+ 3, u, - AW

AW, - W) Ju, - AW+ 5,7 |w, - [}

- 25,
+2 {7 £ (wy) = AR| - u, = AW | A(Tw, @) f (w,) - AT
[ A(Tw, = )| u, - A2 | w, -} ]
Since {w,},{f(w,)},{ATw,},{u,} are bounded, o, — 0 and X}, B, < oo.
We obtain

[Wo =W = (=2 |w, —W[ +b, +c,, (26)
where
A = 200-ap)a,,
b = an{2<Twn—v”v,;/f(vT/)—AvT/>+an||;/f(Wn)—Av”v||2

-~ 2a, A(Twn—W)||-||yf(wn)—AW||+an;72||Wn—W||2},

¢ = ﬂn[{z(Twn—w,un—Aw)+ﬁn||un_AW”z_2ﬂn A(Tw, 1) Ju, - A

+,7° [, = 2 {7 £ ()~ A, - A
—| AT, = &) 7 f (w,) - AF|— || A(Tw, = W)||-[|u, - AF]+ 257 |w, _an}]

We note by (C3) and (25) that > | A, <o,

b/4, = 2(Tw,—W, 7 f (W)~ AW)+ e, || f (w,)— AW[’
A(Tw, = W)| -7 f (W) — AW+, 7 |w, — [ /2(7 — ay) — 0,

-2a,

and 2., , C, <.
Now applying Lemma 2 to (26), we can conclude that w, — W.

If {#,}=0and T:H — H is a nonexpansive mapping in Theorem 10,

we get,
Corollary 11. (Marino and Xu, 2006 ). Let {x,} be generated by algorithm:

Xn+l =(I _anA)TXn+an}/f(Xn)> n=0.
Assume the sequence {¢,} of parameters satisfying conditions (C1) - (C3).

Then {x,} converges strongly to X that is obtained in Theorem 8.
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