Idempotency of linear combinations of commuting three tripotent matrices

Urailuk Singthong and Wiwat Wanicharpichat*

Department of Mathematics, Naresuan University, Phitsanulok, 65000, Thailand *Corresponding author. E-mail: Wiwatw@nu.ac.th

ABSTRACT

Given nonzero commuting tripotent matrices T_1, T_2 and T_3 , i.e., $T_i^3 = T_i$ and $T_iT_j = T_jT_i$, i, j = 1, 2, 3, the problem of characterizing all situations, in which a linear combination $A = c_1T_1 + c_2T_2 + c_3T_3$ where $c_1, c_2, c_3 \in \mathbb{C} \setminus \{0\}$ is an idempotent matrix, is studied.

Keywords : idempotency, tripotent matrices

INTRODUCTION

The symbols \mathbb{C} and $M_n(\mathbb{C})$ are used to denote the sets of complex numbers and $n \times n$ complex matrices, respectively. It is assumed throughout that $a_0, a_1, a_2 \in \mathbb{C}$ are nonzero complex numbers and $T_0, T_1, T_2 \in M_n(\mathbb{C})$ are nonzero commuting tripotent complex matrices of order n, i.e., $T_i^3 = T_i$, and $T_iT_j = T_jT_i, i, j = 1, 2, 3$. The purpose of this note is to characterize all situations in which a linear combination of T_0, T_1 and T_2 of the form

$$A = a_0 T_0 + a_1 T_1 + a_2 T_2$$

is also an idempotent matrix. A similar problem, concerning the question of when a linear combination

$$T = c_1 T_1 + c_2 T_2$$

of nonzero tripotent matrices T_1 and $T_2 \in M_n(\mathbb{C})$ and $c_1, c_2 \in \mathbb{C} \setminus \{0\}$ is tripotent, has been solved by Baksalary *et al.* (2004). From their theorm it follows that the linear combination of tripotent $T = c_1T_1 + c_2T_2$, where T_1 and T_2 are tripotent, is tripotent. Further results concerning the idempotency of linear combinations of matrices are given in (Baksalary and Baksalary, 2000; Baksalary *et al.*, 2002). A very useful property of a tripotent matrix is that it can uniquely be represented as a difference of two idempotent matrices B_1 and B_2 which are disjoint in the sense that $B_1B_2 = 0$ and $B_2B_1 = 0$ (Baksalary, 2004)

MAIN RESULTS

As already pointed out, the main result of this paper provides a complete solution to the problem of characterizing situations, in which a linear combination of three tripotent matrices is idempotent.

Lemma 1. (Baksalary *et al.*, 2002). For nonzero $c_0, d_0 \in \mathbb{C}$ and nonzero tripotent matrices $T_0, T \in M_n(\mathbb{C})$ satisfying the commutativity property $T_0T = TT_0$, let *A* be their linear combination of the form $A = c_0T_0 + d_0T$. Under the assumption that $T \neq T_0$ and $T_0 = -T$, the matrix *A* is tripotent if and only if one of the following conditions holds:

(a)
$$c_0 = 1$$
, $d_0 = -1$ or $c_0 = -1$, $d_0 = 1$ and $T_0^2 T = T_0 T^2$,
(b) $c_0 = 1$, $d_0 = -2$ or $c_0 = -1$, $d_0 = 2$ and $T_0^2 T = T = T_0 T^2$,
(c) $c_0 = 2$, $d_0 = -1$ or $c_0 = -2$, $d_0 = 1$ and $T_0^2 T = T_0 = T_0 T^2$,
(d) $c_0 = 1$, $d_0 = 1$ or $c_0 = -1$, $d_0 = -1$ and $T_0^2 T = -T_0 T^2$,
(e) $c_0 = 1$, $d_0 = 2$ or $c_0 = -1$, $d_0 = -2$ and $T_0^2 T = T = -T_0 T^2$,
(f) $c_0 = 2$, $d_0 = 1$ or $c_0 = -2$, $d_0 = -1$ and $T_0^2 T = -T_0 = -T_0 T^2$,
(g) $c_0 = \frac{1}{2}$, $d_0 = \frac{1}{2}$ or $c_0 = \frac{1}{2}$, $d_0 = -\frac{1}{2}$ or $c_0 = -\frac{1}{2}$, $d_0 = \frac{1}{2}$ or
 $c_0 = -\frac{1}{2}$, $d_0 = -\frac{1}{2}$ and $T_0^2 T = T$, $T_0 T^2 = T_0$.

From Lemma 1 we have equation $A = c_0T_0 + d_0T$. Let *T* be a linear combination $T = c_1T_1 + c_2T_2$ of nonzero tripotent matrices $T_1, T_2 \in M_n(\mathbb{C})$ and $c_1, c_2 \in \mathbb{C} \setminus \{0\}$ the combination of tripotent matrices $c_1T_1 + c_2T_2$ is also a tripotent matrix when c_1, c_2 follows as the condition (a) to (g) of Lemma 1. We will bring *T* to replace in the linear combination of $A = c_0T_0 + d_0T$ and so we can get the equation as follows:

$$A = c_0 T_0 + d_0 T$$

= $c_0 T_0 + d_0 (c_1 T_1 + c_2 T_2).$ (1)

By substituting $T = c_1T_1 + c_2T_2$ in the linear combination of the form $A = c_0T_0 + d_0T$, we have the following theorem.

Theorem 1. For nonzero $c_0, c_1, c_2, d_0 \in \mathbb{C}$, and nonzero tripotent matrices $T_0, T_1, T_2 \in M_n(\mathbb{C})$ satisfying the commutativity property, let *A* be their linear combination of the form

$$A = c_0 T_0 + d_0 (c_1 T_1 + c_2 T_2).$$

Under the assumption that $T_0 \neq (c_1T_1 + c_2T_2)$ and $(c_1T_1 + c_2T_2) \neq -T_0$, the matrix A is tripotent if and only if:

- (a) $c_0 = 1, d_0 = -1, c_1 = 1, c_2 = -1$ or $c_0 = -1, d_0 = 1, c_1 = -1, c_2 = 1$ and $T_0^2(c_1T_1 + c_2T_2) = T_0(c_1T_1 + c_2T_2)^2$,
- (b) $c_0 = 1, d_0 = -2, c_1 = 1, c_2 = -2$ or $c_0 = -1, d_0 = 2, c_1 = -1, c_2 = 2$ and $T_0^2(c_1T_1 + c_2T_2) = (c_1T_1 + c_2T_2) = T_0(c_1T_1 + c_2T_2)^2$,
- (c) $c_0 = 2, d_0 = -1, c_1 = 2, c_2 = -1$ or $c_0 = -2, d_0 = 1, c_1 = -2, c_2 = 1$ and $T_0^2(c_1T_1 + c_2T_2) = T_0 = T_0(c_1T_1 + c_2T_2)^2$,
- (d) $c_0 = 1, d_0 = 1, c_1 = 1, c_2 = 1$ or $c_0 = 1, d_0 = -1, c_1 = -1, c_2 = -1$ and $T_0^2(c_1T_1 + c_2T_2) = -T_0(c_1T_1 + c_2T_2)^2$,
- (e) $c_0 = 1, d_0 = 2, c_1 = 1, c_2 = 2$ or $c_0 = -1, d_0 = -2, c_1 = -1, c_2 = -2$ and $T_0^2(c_1T_1 + c_2T_2) = (c_1T_1 + c_2T_2) = -T_0(c_1T_1 + c_2T_2)^2$,
- (f) $c_0 = 2, d_0 = 1, c_1 = 2, c_2 = 1$ or $c_0 = -2, d_0 = -1, c_1 = -2, c_2 = -1$ and $T_0^2(c_1T_1 + c_2T_2) = -T_0 = -T_0(c_1T_1 + c_2T_2)^2$,

(g)
$$c_0 = \frac{1}{2}, d_0 = \frac{1}{2}, c_1 = \frac{1}{2}, c_2 = \frac{1}{2}$$
 or $c_0 = \frac{1}{2}, d_0 = -\frac{1}{2}, c_1 = \frac{1}{2}, c_2 = -\frac{1}{2}$ or
 $c_0 = -\frac{1}{2}, d_0 = \frac{1}{2}, c_1 = -\frac{1}{2}, c_2 = \frac{1}{2}$ or $c_0 = -\frac{1}{2}, d_0 = -\frac{1}{2}, c_1 = -\frac{1}{2}, c_2 = -\frac{1}{2}$ and
 $T_0^2(c_1T_1 + c_2T_2) = (c_1T_1 + c_2T_2), T_0(c_1T_1 + c_2T_2)^2 = T_0.$

Theorem 2. For nonzero $a_0, a_1, a_2 \in \mathbb{C}$, and nonzero tripotent matrices $T_0, T_1, T_2 \in M_n(\mathbb{C})$ satisfying the commutativity property, let *A* be their linear combination of the form

$$A = a_0 T_0 + a_1 T_1 + a_2 T_2$$

where $T_2 \neq T_1$ and $T_2 \neq -T_1$ Then the matrix *A* is tripotent if and only if one of the following conditions holds:

- (a) $a_0 = 1, a_1 = -1, a_2 = -1$ or $a_0 = -1, a_1 = -1, a_2 = 1$ and $T_0^2(T_1 - T_2) = T_0(T_1 - T_2)^2 = -T_0^2(T_1 - T_2),$
- (b) $a_0 = 1, a_1 = -2, a_2 = 4$ or $a_0 = -1, a_1 = -2, a_2 = 4$ and $T_0^2 (T_1 - 2T_2) = (T_1 - 2T_2) = T_0 (T_1 - 2T_2)^2$,

(c)
$$a_0 = 2, a_1 = -2, a_2 = 1$$
 or $a_0 = -2, a_1 = -2, a_2 = 1$ and
 $T_0^2 (T_2 - T_1) = T_0 = T_0 (T_2 - T_1)^2$,
(d) $a_0 = 1, a_1 = 1, a_2 = 1$ or $a_0 = -1, a_1 = 1, a_2 = 1$ and $T_0^2 (T_1 + T_2) = -T_0 (T_1 + T_2)^2$,
(e) $a_0 = 1, a_1 = 2, a_2 = 4$ or $a_0 = -1, a_1 = 2, a_2 = 4$ and
 $T_0^2 (T_1 + T_2) = (T_1 + T_2) = -T_0 (T_1 + T_2)^2$,
(f) $a_0 = 2, a_1 = 2, a_2 = 1$ or $a_0 = -2, a_1 = 2, a_2 = 1$ and
 $T_0^2 (2T_1 + T_2) = -T_0 = -T_0^2 (2T_1 + T_2)$,

(g)
$$a_0 = \frac{1}{2}, a_1 = \frac{1}{4}, a_2 = \frac{1}{4}$$
 or $a_0 = -\frac{1}{2}, a_1 = \frac{1}{4}, a_2 = \frac{1}{4}$ and
 $T_0^2(\frac{1}{2}T_1 + \frac{1}{2}T_2) = (\frac{1}{2}T_1 + \frac{1}{2}T_2), \ T_0(\frac{1}{2}T_1 + \frac{1}{2}T_2)^2 = T_0.$

Proof. Let

$$A = c_0 T_0 + d_0 T \text{ where } T = c_1 T_1 + c_2 T_2.$$
(3)

Direct calculations show that A of the form (1) is tripotent if and only if $c_0^3 T_0 + 3c_0^2 d_0 T_0^2 T + 3c_0 d_0^2 T_0 T^2 + d_0^3 T = c_0 T_0 + d_0 T$

or

$$(c_0^3 - c_0)T_0 + 3c_0^2 d_0 T_0^2 T + 3c_0 d_0^2 T_0 T^2 + (d_0^3 - d_0)T = 0.$$
(4)

Substituting $T = c_1T_1 + c_2T_2$ to (4) we have

$$(c_0^3 - c_0)T_0 + 3c_0^2 d_0 T_0^2 (c_1 T_1 + c_2 T_2) + 3c_0 d_0^2 T_0 (c_1 T_1 + c_2 T_2)^2 + (d_0^3 - d_0)(c_1 T_1 + c_2 T_2) = 0.$$
(5)

By (3), we can rewrite equation:

$$A = c_0 T_0 + d_0 T$$

= $c_0 T_0 + d_0 (c_1 T_1 + c_2 T_2)$
= $c_0 T_0 + d_0 c_1 T_1 + d_0 c_2 T_2.$

Let $a_0 = c_0, a_1 = d_0 c_1$ and $a_2 = d_0 c_2$. Thus

$$A = a_0 T_0 + a_1 T_1 + a_2 T_2 \tag{6}$$

By Theorem 1 together with (5) we consider the following case: <u>Case (i)</u>. $c_0 = 1, d_0 = -1, c_1 = 1, c_2 = -1$ and $T_0^2 (c_1 T_1 + c_2 T_2) = T_0 (c_1 T_1 + c_2 T_2)^2$, $-3T_0^2 (T_1 - T_2) + 3T_0 (T_1 - T_2)^2 = 0$, $-T_0^2 (T_1 - T_2) + T_0 (T_1 - T_2)^2 = 0$, $-T_0^2 (T_1 - T_2) + T_0^2 (T_1 - T_2) = 0$.

<u>Case (ii)</u>. $c_0 = -1, d_0 = 1, c_1 = -1, c_2 = 1$ and $T_0^2(c_1T_1 + c_2T_2) = T_0(c_1T_1 + c_2T_2)^2$,

$$3T_0^2(T_2 - T_1) - 3T_0(T_2 - T_1)^2 = 0,$$

$$T_0^2(T_2 - T_1) - T_0(T_2 - T_1)^2 = 0,$$

$$T_0^2(T_2 - T_1) - T_0^2(T_2 - T_1) = 0.$$

In this case, we have $a_0 = 1, a_1 = -1, a_2 = -1$ or $a_0 = -1, a_1 = -1, a_2 = 1$ and $T_0^2(T_1 - T_2) = T_0(T_1 - T_2)^2 = -T_0^2(T_1 - T_2)$. From (b) to (g) the proofs are similar to (a).

By Baksalary (2004), the tripotent matrix A, in Theorem 2, can uniquely be represented as a difference of two idempotent matrices A_1 and A_2 which are disjoint in the sense that $A_1A_2 = 0$ and $A_2A_1 = 0$. Thus, $A = A_1 - A_2$ where A_1 and A_2 are idempotent matrices.

Given two different nonzero idempotent matrices A_1 and A_2 , let C be their linear combination of the form

$$C = c_1 A_1 + (-c_2) A_2 \tag{7}$$

Direct calculations show that, in view of $C^2 = C$, a matrix *C* of the form (7)

$$C = c_1 A_1 + (-c_2) A_2$$

$$C^2 = c_1^2 A_1^2 - 2c_1 c_2 A_1 A_2 + c_2^2 A_2^2$$

$$c_1 A_1 + (-c_2) A_2 = c_1^2 A_1^2 - 2c_1 c_2 A_1 A_2 + c_2^2 A_2^2$$

$$(c_1^2 - c_1) A_1^2 - 2c_1 c_2 A_1 A_2 + (c_2^2 + c_2) A_2^2 = 0.$$

Then, in view of the Theorem (Baksalary *et al.*, 2004), there is one case such that the matrix $C = c_1A_1 + c_2A_2$ (now equal to $C = c_1A_1 + (-c_2)A_2$) is idempotent where

$$c_1 = 1, c_2 = 1, \quad A_1 A_2 = 0 = A_2 A_1$$
 (8)

Hence *A* is an idempotent matrix, under this condition, criterion (8). The proof is complete.

Corollary 1. For nonzero $c_0 d_0 \in \mathbb{C}$ and nonzero tripotent matrices $T_0, T_1, T_2 \in M_n(\mathbb{C})$ satisfying the commutativity property, let *A* be their linear combination of the form

$$A = a_0 T_0 + a_1 T_1 + a_2 T_2, \quad a_0, a_1, a_2 \in \mathbb{C}$$

where $T_i \neq T_j$ and $Ti \neq -Tj$, $\forall i, j = 1, 2, 3$. Then:

(a) in case where $T_i T_j = 0, \forall i, j = 1, 2, 3$. a matrix *A* is tripotent if and only if $(a_0, a_1, a_2) \in \{(1,1,1), (1,-1,1), (-1,-1,1), (-1,1,1)\},\$

(b) in case $T_0T = T$, where $T = c_1T_1 + c_2T_2$ a matrix *A* is tripotent if and only if *T* is idempotent and $(a_0, a_1, a_2) \in \{(1, -1, 1), (-1, -1, 1), (-1, -2, 4), (-1, -2, 4)\}$, or -T is idempotent and $(a_0, a_1, a_2) \in \{(1, 1, 1), (-1, 1, 1), (1, 2, 4), (-1, 2, 4)\}$, or T_0 is idempotent equal to *T* and the pairs (a_0, a_1, a_2) are as in Theorem 2(g),

(c) in case $T_0T = T_0$, where $T = c_1T_1 + c_2T_2$ a matrix *A* is tripotent if and only if T_0 is idempotent and $(a_0, a_1, a_2) \in \{(1, -1, 1), (-1, -1, 1), (2, -2, 1), (-2, -2, 1)\}$, or $-T_0$ is idempotent and $(a_0, a_1, a_2) \in \{(1, 1, 1), (-1, 1, 1), (2, 2, 1), (-2, 2, 1)\}$, or *T* is idempotent equal to T_0^2 and the pairs (a_0, a_1, a_2) are as in Theorem 2(g).

Proof. It follows directly from Theorem 2. It seem interesting to show that k must be less than 3 when c_1 and c_2 are restricted to be real numbers.

Theorem 3. Let c_1 and c_2 be nonzero real numbers. Let A and B be nonzero complex matrices and $c_1A + c_2B = C$ satisfy $A^3 = A, B^{k+1} = B, AB = BA, A \neq B$, and $C^2 = C$. Then B is idempotent or tripotent matrix.

Proof. Let A be tripotent and B be k-potent. If $c_1A + c_2B$ is idempotent, then $c_1A + c_2B = c_1(A_1 - A_2) + c_2B$, (by [4, p. 22])

$$= (c_1A_1 - c_1A_2) + c_2B$$

= $(c_1A_1 + dA_2) + c_2B$ (where $d = c_1$)
= $c_1A_1 + (dA_2 + c_2B)$.

By Corollary (Benitez and Thome, 2005), B must be idempotent or tripotent.

If *B* is an idempotent matrix, then $c_1A_1 + (dA_2 + c_2B)$ is idempotent. From Theorem (Baksalary *et al.*, 2004), asserts that there are d, c_2 such that $(dA_2 + c_2B)$ is idempotent. Now, let $E = (dA_2 + c_2B)$ be idempotent. From Theorem (Baksalary *et al.*, 2004), we can find some scalar k_1, k_2 such that $k_1A_1 + k_2E$ is idempotent. Thus, there exist some scalars for which the combination of *A* and *B* is idempotent.

If *B* is a tripotent matrix, then $c_1A_1 + (dA_2 + c_2B)$ is idempotent. From Theorem (Baksalary, 2004), asserts that there are d, c_2 such that $(dA_2 + c_2B)$ is idempotent. Now, let $Q = (dA_2 + c_2B)$ be idempotent. From Theorem (Baksalary *et al.*, 2004), we can find some scalar l_1, l_2 such that $l_1A_1 + l_2Q$ is idempotent. Thus, there exist some scalars for which the combination of *A* and *B* is idempotent.

Corollary 2. Let A, B and C be nonzero complex matrices. If one of A or B or C is idempotent (or tripotent) and the combination A, B and C is idempotent (or tripotent), then the others matrices must be idempotent (or tripotent). *Proof.* It follows directly from Theorem 3.

REFERENCES

- Baksalary, J. K. and Baksalary, O. M. (2000). Idempotency of linear combinations of two idempotent matrices. Linear Algebra and Its Applications, *321*, 3-7.
- Baksalary, J. K., Baksalary, O. M. and Ä Ozdemir H. (2004). A note on linear combinations of commuting tripotent matrices. Linear Algebra and Its Applications, *388*, 45-51.
- Baksalary, J. K., Baksalary, O. M. and Styan, G. P. H. (2002). Idempotency of linear combinations of an idempotent matrix and a tripotent matrix. Linear Algebra and Its
- Baksalary, O. M. (2004). Idempotency of linear combinations of three idempotent matrices, two of which are disjoint. Linear Algebra and Its Applications, *388*, 67-78.
- Benitez, J. and Thome, N. (2005). Idempotency of linear combinations of an idempotent matrix and *t*-potent matrix that commute. Linear Algebra and Its Applications, *403*, 414-418.