Idempotency of linear combinations of commuting three tripotent matrices

Urailuk Singthong and Wiwat Wanicharpichat*
Department of Mathematics, Naresuan University, Phitsanulok, 65000, Thailand
*Corresponding author. E-mail: Wiwatw@nu.ac.th

Abstract

Given nonzero commuting tripotent matrices T_{1}, T_{2} and T_{3}, i.e., $T_{i}^{3}=T_{i}$ and $T_{i} T_{j}=$ $T_{j} T_{i}, i, j=1,2,3$, the problem of characterizing all situations, in which a linear combination $A=c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}$ where $c_{1}, c_{2}, c_{3} \in \mathbb{C} \backslash\{0\}$ is an idempotent matrix, is studied.

Keywords : idempotency, tripotent matrices

INTRODUCTION

The symbols \mathbb{C} and $M_{n}(\mathbb{C})$ are used to denote the sets of complex numbers and $n \times n$ complex matrices, respectively. It is assumed throughout that $a_{0}, a_{1}, a_{2} \in \mathbb{C}$ are nonzero complex numbers and $T_{0}, T_{1}, T_{2} \in M_{n}(\mathbb{C})$ are nonzero commuting tripotent complex matrices of order n, i.e., $T_{i}^{3}=T_{i}$, and $T_{i} T_{j}=T_{j} T_{i}, i, j=1,2,3$. The purpose of this note is to characterize all situations in which a linear combination of T_{0}, T_{1} and T_{2} of the form

$$
A=a_{0} T_{0}+a_{1} T_{1}+a_{2} T_{2}
$$

is also an idempotent matrix. A similar problem, concerning the question of when a linear combination

$$
T=c_{1} T_{1}+c_{2} T_{2}
$$

of nonzero tripotent matrices T_{1} and $T_{2} \in M_{n}(\mathbb{C})$ and $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ is tripotent, has been solved by Baksalary et al. (2004). From their theorm it follows that the linear combination of tripotent $T=c_{1} T_{1}+c_{2} T_{2}$, where T_{1} and T_{2} are tripotent, is tripotent. Further results concerning the idempotency of linear combinations of matrices are given in (Baksalary and Baksalary, 2000; Baksalary et al., 2002). A very useful property of a tripotent matrix is that it can uniquely be represented as a difference of two idempotent matrices B_{1} and B_{2} which are disjoint in the sense that $B_{1} B_{2}=0$ and $B_{2} B_{1}=0$ (Baksalary, 2004)

MAIN RESULTS

As already pointed out, the main result of this paper provides a complete solution to the problem of characterizing situations, in which a linear combination of three tripotent matrices is idempotent.

Lemma 1. (Baksalary et al., 2002). For nonzero $c_{0}, d_{0} \in \mathbb{C}$ and nonzero tripotent matrices $T_{0}, T \in M_{n}(\mathbb{C})$ satisfying the commutativity property $T_{0} T=T T_{0}$, let A be their linear combination of the form $A=c_{0} T_{0}+d_{0} T$. Under the assumption that $T \neq T_{0}$ and $T_{0}=-T$, the matrix A is tripotent if and only if one of the following conditions holds:
(a) $c_{0}=1, d_{0}=-1$ or $c_{0}=-1, d_{0}=1$ and $T_{0}^{2} T=T_{0} T^{2}$,
(b) $c_{0}=1, d_{0}=-2$ or $c_{0}=-1, d_{0}=2$ and $T_{0}^{2} T=T=T_{0} T^{2}$,
(c) $c_{0}=2, d_{0}=-1$ or $c_{0}=-2, d_{0}=1$ and $T_{0}^{2} T=T_{0}=T_{0} T^{2}$,
(d) $c_{0}=1, d_{0}=1$ or $c_{0}=-1, d_{0}=-1$ and $T_{0}^{2} T=-T_{0} T^{2}$,
(e) $c_{0}=1, d_{0}=2$ or $c_{0}=-1, d_{0}=-2$ and $T_{0}^{2} T=T=-T_{0} T^{2}$,
(f) $c_{0}=2, d_{0}=1$ or $c_{0}=-2, d_{0}=-1$ and $T_{0}^{2} T=-T_{0}=-T_{0} T^{2}$,
(g) $c_{0}=\frac{1}{2}, d_{0}=\frac{1}{2}$ or $c_{0}=\frac{1}{2}, d_{0}=-\frac{1}{2}$ or $c_{0}=-\frac{1}{2}, d_{0}=\frac{1}{2}$ or

$$
c_{0}=-\frac{1}{2}, d_{0}=-\frac{1}{2} \text { and } T_{0}^{2} T=T, T_{0} T^{2}=T_{0} .
$$

From Lemma 1 we have equation $A=c_{0} T_{0}+d_{0} T$. Let T be a linear combination $T=c_{1} T_{1}+c_{2} T_{2}$ of nonzero tripotent matrices $T_{1}, T_{2} \in M_{n}(\mathbb{C})$ and $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ the combination of tripotent matrices $c_{1} T_{1}+c_{2} T_{2}$ is also a tripotent matrix when c_{1}, c_{2} follows as the condition (a) to (g) of Lemma 1 . We will bring T to replace in the linear combination of $A=c_{0} T_{0}+d_{0} T$ and so we can get the equation as follows:

$$
\begin{align*}
A & =c_{0} T_{0}+d_{0} T \tag{1}\\
& =c_{0} T_{0}+d_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)
\end{align*}
$$

By substituting $T=c_{1} T_{1}+c_{2} T_{2}$ in the linear combination of the form $A=c_{0} T_{0}+d_{0} T$, we have the following theorem.

Theorem 1. For nonzero $c_{0}, c_{1}, c_{2}, d_{0} \in \mathbb{C}$, and nonzero tripotent matrices $T_{0}, T_{1}, T_{2} \in M_{n}(\mathbb{C})$ satisfying the commutativity property, let A be their linear combination of the form

$$
A=c_{0} T_{0}+d_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right) .
$$

Under the assumption that $T_{0} \neq\left(c_{1} T_{1}+c_{2} T_{2}\right)$ and $\left(c_{1} T_{1}+c_{2} T_{2}\right) \neq-T_{0}$, the matrix A is tripotent if and only if:
(a) $c_{0}=1, d_{0}=-1, c_{1}=1, c_{2}=-1$ or $c_{0}=-1, d_{0}=1, c_{1}=-1, c_{2}=1$ and

$$
T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2},
$$

(b) $c_{0}=1, d_{0}=-2, c_{1}=1, c_{2}=-2$ or $c_{0}=-1, d_{0}=2, c_{1}=-1, c_{2}=2$ and

$$
T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=\left(c_{1} T_{1}+c_{2} T_{2}\right)=T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2},
$$

(c) $c_{0}=2, d_{0}=-1, c_{1}=2, c_{2}=-1$ or $c_{0}=-2, d_{0}=1, c_{1}=-2, c_{2}=1$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=T_{0}=T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,
(d) $c_{0}=1, d_{0}=1, c_{1}=1, c_{2}=1$ or $c_{0}=1, d_{0}=-1, c_{1}=-1, c_{2}=-1$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=-T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,
(e) $c_{0}=1, d_{0}=2, c_{1}=1, c_{2}=2$ or $c_{0}=-1, d_{0}=-2, c_{1}=-1, c_{2}=-2$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=\left(c_{1} T_{1}+c_{2} T_{2}\right)=-T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,
(f) $c_{0}=2, d_{0}=1, c_{1}=2, c_{2}=1$ or $c_{0}=-2, d_{0}=-1, c_{1}=-2, c_{2}=-1$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=-T_{0}=-T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,
(g) $c_{0}=\frac{1}{2}, d_{0}=\frac{1}{2}, c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}$ or $c_{0}=\frac{1}{2}, d_{0}=-\frac{1}{2}, c_{1}=\frac{1}{2}, c_{2}=-\frac{1}{2}$ or

$$
\begin{aligned}
& c_{0}=-\frac{1}{2}, d_{0}=\frac{1}{2}, c_{1}=-\frac{1}{2}, c_{2}=\frac{1}{2} \text { or } c_{0}=-\frac{1}{2}, d_{0}=-\frac{1}{2}, c_{1}=-\frac{1}{2}, c_{2}=-\frac{1}{2} \text { and } \\
& T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=\left(c_{1} T_{1}+c_{2} T_{2}\right), T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}=T_{0} .
\end{aligned}
$$

Theorem 2. For nonzero $a_{0}, a_{1}, a_{2} \in \mathbb{C}$, and nonzero tripotent matrices $T_{0}, T_{1}, T_{2} \in M_{n}(\mathbb{C})$ satisfying the commutativity property, let A be their linear combination of the form

$$
A=a_{0} T_{0}+a_{1} T_{1}+a_{2} T_{2}
$$

where $T_{2} \neq T_{1}$ and $T_{2} \neq-T_{1}$ Then the matrix A is tripotent if and only if one of the following conditions holds:
(a) $a_{0}=1, a_{1}=-1, a_{2}=-1$ or $a_{0}=-1, a_{1}=-1, a_{2}=1$ and $T_{0}^{2}\left(T_{1}-T_{2}\right)=T_{0}\left(T_{1}-T_{2}\right)^{2}=-T_{0}^{2}\left(T_{1}-T_{2}\right)$,
(b) $a_{0}=1, a_{1}=-2, a_{2}=4$ or $a_{0}=-1, a_{1}=-2, a_{2}=4$ and $T_{0}^{2}\left(T_{1}-2 T_{2}\right)=\left(T_{1}-2 T_{2}\right)=T_{0}\left(T_{1}-2 T_{2}\right)^{2}$,
(c) $a_{0}=2, a_{1}=-2, a_{2}=1$ or $a_{0}=-2, a_{1}=-2, a_{2}=1$ and $T_{0}^{2}\left(T_{2}-T_{1}\right)=T_{0}=T_{0}\left(T_{2}-T_{1}\right)^{2}$,
(d) $a_{0}=1, a_{1}=1, a_{2}=1$ or $a_{0}=-1, a_{1}=1, a_{2}=1$ and $T_{0}^{2}\left(T_{1}+T_{2}\right)=-T_{0}\left(T_{1}+T_{2}\right)^{2}$,
(e) $a_{0}=1, a_{1}=2, a_{2}=4$ or $a_{0}=-1, a_{1}=2, a_{2}=4$ and $T_{0}^{2}\left(T_{1}+T_{2}\right)=\left(T_{1}+T_{2}\right)=-T_{0}\left(T_{1}+T_{2}\right)^{2}$,
(f) $a_{0}=2, a_{1}=2, a_{2}=1$ or $a_{0}=-2, a_{1}=2, a_{2}=1$ and $T_{0}^{2}\left(2 T_{1}+T_{2}\right)=-T_{0}=-T_{0}^{2}\left(2 T_{1}+T_{2}\right)$,
(g) $a_{0}=\frac{1}{2}, a_{1}=\frac{1}{4}, a_{2}=\frac{1}{4}$ or $a_{0}=-\frac{1}{2}, a_{1}=\frac{1}{4}, a_{2}=\frac{1}{4}$ and

$$
T_{0}^{2}\left(\frac{1}{2} T_{1}+\frac{1}{2} T_{2}\right)=\left(\frac{1}{2} T_{1}+\frac{1}{2} T_{2}\right), T_{0}\left(\frac{1}{2} T_{1}+\frac{1}{2} T_{2}\right)^{2}=T_{0}
$$

Proof. Let

$$
\begin{equation*}
A=c_{0} T_{0}+d_{0} T \text { where } T=c_{1} T_{1}+c_{2} T_{2} . \tag{3}
\end{equation*}
$$

Direct calculations show that A of the form (1) is tripotent if and only if

$$
c_{0}^{3} T_{0}+3 c_{0}^{2} d_{0} T_{0}^{2} T+3 c_{0} d_{0}^{2} T_{0} T^{2}+d_{0}^{3} T=c_{0} T_{0}+d_{0} T
$$

or

$$
\begin{equation*}
\left(c_{0}^{3}-c_{0}\right) T_{0}+3 c_{0}^{2} d_{0} T_{0}^{2} T+3 c_{0} d_{0}^{2} T_{0} T^{2}+\left(d_{0}^{3}-d_{0}\right) T=0 \tag{4}
\end{equation*}
$$

Substituting $T=c_{1} T_{1}+c_{2} T_{2}$ to (4) we have

$$
\begin{equation*}
\left(c_{0}^{3}-c_{0}\right) T_{0}+3 c_{0}^{2} d_{0} T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)+3 c_{0} d_{0}^{2} T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}+\left(d_{0}^{3}-d_{0}\right)\left(c_{1} T_{1}+c_{2} T_{2}\right)=0 \tag{5}
\end{equation*}
$$

By (3), we can rewrite equation:

$$
\begin{aligned}
A & =c_{0} T_{0}+d_{0} T \\
& =c_{0} T_{0}+d_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right) \\
& =c_{0} T_{0}+d_{0} c_{1} T_{1}+d_{0} c_{2} T_{2} .
\end{aligned}
$$

Let $a_{0}=c_{0}, a_{1}=d_{0} c_{1}$ and $a_{2}=d_{0} c_{2}$. Thus

$$
\begin{equation*}
A=a_{0} T_{0}+a_{1} T_{1}+a_{2} T_{2} \tag{6}
\end{equation*}
$$

By Theorem 1 together with (5) we consider the following case:
Case (i). $c_{0}=1, d_{0}=-1, c_{1}=1, c_{2}=-1$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,

$$
\begin{aligned}
& -3 T_{0}^{2}\left(T_{1}-T_{2}\right)+3 T_{0}\left(T_{1}-T_{2}\right)^{2}=0 \\
& -T_{0}^{2}\left(T_{1}-T_{2}\right)+T_{0}\left(T_{1}-T_{2}\right)^{2}=0 \\
& -T_{0}^{2}\left(T_{1}-T_{2}\right)+T_{0}^{2}\left(T_{1}-T_{2}\right)=0
\end{aligned}
$$

Case (ii). $c_{0}=-1, d_{0}=1, c_{1}=-1, c_{2}=1$ and $T_{0}^{2}\left(c_{1} T_{1}+c_{2} T_{2}\right)=T_{0}\left(c_{1} T_{1}+c_{2} T_{2}\right)^{2}$,

$$
\begin{aligned}
& 3 T_{0}^{2}\left(T_{2}-T_{1}\right)-3 T_{0}\left(T_{2}-T_{1}\right)^{2}=0, \\
& T_{0}^{2}\left(T_{2}-T_{1}\right)-T_{0}\left(T_{2}-T_{1}\right)^{2}=0, \\
& T_{0}^{2}\left(T_{2}-T_{1}\right)-T_{0}^{2}\left(T_{2}-T_{1}\right)=0 .
\end{aligned}
$$

In this case, we have $a_{0}=1, a_{1}=-1, a_{2}=-1$ or $a_{0}=-1, a_{1}=-1, a_{2}=1$ and $T_{0}^{2}\left(T_{1}-T_{2}\right)=T_{0}\left(T_{1}-T_{2}\right)^{2}=-T_{0}^{2}\left(T_{1}-T_{2}\right)$.
From (b) to (g) the proofs are similar to (a).
By Baksalary (2004), the tripotent matrix A, in Theorem 2, can uniquely be represented as a difference of two idempotent matrices A_{1} and A_{2} which are disjoint in the sense that $A_{1} A_{2}=0$ and $A_{2} A_{1}=0$. Thus, $A=A_{1}-A_{2}$ where A_{1} and A_{2} are idempotent matrices.

Given two different nonzero idempotent matrices A_{1} and A_{2}, let C be their linear combination of the form

$$
\begin{equation*}
C=c_{1} A_{1}+\left(-c_{2}\right) A_{2} \tag{7}
\end{equation*}
$$

Direct calculations show that, in view of $C^{2}=C$, a matrix C of the form (7)

$$
\begin{aligned}
C & =c_{1} A_{1}+\left(-c_{2}\right) A_{2} \\
C^{2} & =c_{1}^{2} A_{1}^{2}-2 c_{1} c_{2} A_{1} A_{2}+c_{2}^{2} A_{2}^{2} \\
c_{1} A_{1}+\left(-c_{2}\right) A_{2} & =c_{1}^{2} A_{1}^{2}-2 c_{1} c_{2} A_{1} A_{2}+c_{2}^{2} A_{2}^{2} \\
\left(c_{1}^{2}-c_{1}\right) A_{1}^{2}-2 c_{1} c_{2} A_{1} A_{2}+\left(c_{2}^{2}+c_{2}\right) A_{2}^{2} & =0 .
\end{aligned}
$$

Then, in view of the Theorem (Baksalary et al., 2004), there is one case such that the matrix $C=c_{1} A_{1}+c_{2} A_{2}$ (now equal to $C=c_{1} A_{1}+\left(-c_{2}\right) A_{2}$) is idempotent where

$$
\begin{equation*}
c_{1}=1, c_{2}=1, \quad A_{1} A_{2}=0=A_{2} A_{1} \tag{8}
\end{equation*}
$$

Hence A is an idempotent matrix, under this condition, criterion (8). The proof is complete.

Corollary 1. For nonzero $c_{0} d_{0} \in \mathbb{C}$ and nonzero tripotent matrices $T_{0}, T_{1}, T_{2} \in M_{n}(\mathbb{C})$ satisfying the commutativity property, let A be their linear combination of the form

$$
A=a_{0} T_{0}+a_{1} T_{1}+a_{2} T_{2}, \quad a_{0}, a_{1}, a_{2} \in \mathbb{C},
$$

where $T_{i} \neq T_{j}$ and $T i \neq-T j, \quad \forall i, j=1,2,3$. Then:
(a) in case where $T_{i} T_{j}=0, \forall i, j=1,2,3$. a matrix A is tripotent if and only if $\left(a_{0}, a_{1}, a_{2}\right) \in\{(1,1,1),(1,-1,1),(-1,-1,1),(-1,1,1)\}$,
(b) in case $T_{0} T=T$, where $T=c_{1} T_{1}+c_{2} T_{2}$ a matrix A is tripotent if and only if T is idempotent and $\left(a_{0}, a_{1}, a_{2}\right) \in\{(1,-1,1),(-1,-1,1),(-1,-2,4),(-1,-2,4)\}$, or $-T$ is idempotent and $\left(a_{0}, a_{1}, a_{2}\right) \in\{(1,1,1),(-1,1,1),(1,2,4),(-1,2,4)\}$, or T_{0} is idempotent equal to T and the pairs $\left(a_{0}, a_{1}, a_{2}\right)$ are as in Theorem 2(g),
(c) in case $T_{0} T=T_{0}$, where $T=c_{1} T_{1}+c_{2} T_{2}$ a matrix A is tripotent if and only if T_{0} is idempotent and $\left(a_{0}, a_{1}, a_{2}\right) \in\{(1,-1,1),(-1,-1,1),(2,-2,1),(-2,-2,1)\}$, or $-T_{0}$ is idempotent and $\left(a_{0}, a_{1}, a_{2}\right) \in\{(1,1,1),(-1,1,1),(2,2,1),(-2,2,1)\}$, or T is idempotent equal to T_{0}^{2} and the pairs $\left(a_{0}, a_{1}, a_{2}\right)$ are as in Theorem 2(g).

Proof. It follows directly from Theorem 2. It seem interesting to show that k must be less than 3 when c_{1} and c_{2} are restricted to be real numbers.

Theorem 3. Let c_{1} and c_{2} be nonzero real numbers. Let A and B be nonzero complex matrices and $c_{1} A+c_{2} B=C$ satisfy $A^{3}=A, B^{k+1}=B, A B=B A, A \neq B$, and $C^{2}=C$. Then B is idempotent or tripotent matrix.

Proof. Let A be tripotent and B be k-potent. If $c_{1} A+c_{2} B$ is idempotent, then

$$
\begin{array}{rlrl}
c_{1} A+c_{2} B & =c_{1}\left(A_{1}-A_{2}\right)+c_{2} B, & & (\text { by }[4, \text { p. 22]) } \\
& =\left(c_{1} A_{1}-c_{1} A_{2}\right)+c_{2} B & & \\
& =\left(c_{1} A_{1}+d A_{2}\right)+c_{2} B & & \left(\text { where } d=c_{1}\right) \\
& =c_{1} A_{1}+\left(d A_{2}+c_{2} B\right) . &
\end{array}
$$

By Corollary (Benitez and Thome, 2005), B must be idempotent or tripotent.
If B is an idempotent matrix, then $c_{1} A_{1}+\left(d A_{2}+c_{2} B\right)$ is idempotent. From Theorem (Baksalary et al., 2004), asserts that there are d, c_{2} such that $\left(d A_{2}+c_{2} B\right)$ is idempotent. Now, let $E=\left(d A_{2}+c_{2} B\right)$ be idempotent. From Theorem (Baksalary et al., 2004), we can find some scalar k_{1}, k_{2} such that $k_{1} A_{1}+k_{2} E$ is idempotent. Thus, there exist some scalars for which the combination of A and B is idempotent.

If B is a tripotent matrix, then $c_{1} A_{1}+\left(d A_{2}+c_{2} B\right)$ is idempotent. From Theorem (Baksalary, 2004), asserts that there are d, c_{2} such that $\left(d A_{2}+c_{2} B\right)$ is idempotent. Now, let $Q=\left(d A_{2}+c_{2} B\right)$ be idempotent. From Theorem (Baksalary et al., 2004), we can find some scalar l_{1}, l_{2} such that $l_{1} A_{1}+l_{2} Q$ is idempotent. Thus, there exist some scalars for which the combination of A and B is idempotent.

Corollary 2. Let A, B and C be nonzero complex matrices. If one of A or B or C is idempotent (or tripotent) and the combination A, B and C is idempotent (or tripotent), then the others matrices must be idempotent (or tripotent).
Proof. It follows directly from Theorem 3.

REFERENCES

Baksalary, J. K. and Baksalary, O. M. (2000). Idempotency of linear combinations of two idempotent matrices. Linear Algebra and Its Applications, 321, 3-7.
Baksalary, J. K., Baksalary, O. M. and Ä Ozdemir H. (2004). A note on linear combinations of commuting tripotent matrices. Linear Algebra and Its Applications, 388, 45-51.
Baksalary, J. K., Baksalary, O. M. and Styan, G. P. H. (2002). Idempotency of linear combinations of an idempotent matrix and a tripotent matrix. Linear Algebra and Its
Baksalary, O. M. (2004). Idempotency of linear combinations of three idempotent matrices, two of which are disjoint. Linear Algebra and Its Applications, 388, 67-78.
Benitez, J. and Thome, N. (2005). Idempotency of linear combinations of an idempotent matrix and t-potent matrix that commute. Linear Algebra and Its Applications, 403, 414-418.

