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ABSTRACT 
 

 A congruence ρ on a semigroup S is a semilattice congruence on S if  S/ρ  is a 
semilattice. A semigroup S is called an E-inversive semigroup if for every a∈S there is an 
element x in S such that ax is idempotent. In this paper, we investigated a semilattice 
congruence and an inverse congruence on E-inversive semigroups.  
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INTRODUCTION 
 
 In 1955, Thierrin introduced the concept of an E-inversive semigroup. A 
semigroup S is called an E-inversive semigroup (Mitsch, 1990) if for every a∈S  there 
exists x∈S such that ax  is idempotent. Let E(S) denote the set of all idempotents of a 
semigroup S. A semigroup S  is called an E-semigroup (Weipoltshammer, 2002) if E(S) 
forms a subsemigroup of S. A semigroup S  is said to be a band  if every element of S  
is idempotent, and a band S is  rectangular (Clifford and Preston, 1961, p.10) if for all  x, 
y∈S, x = xyx.  A subsemigroup T of  a semigroup is normal  if abcd = acbd for all a, 
b, c, d∈T . A commutative band is a semilattice (Clifford and Preston, 1961). An 
element a of a semigroup S is called regular if there exists x in S such that a = axa. A 
semigroup S is a regular semigroup (Howie, 1995) if all its elements are regular. A 
regular semigroup S is called an inverse semigroup (Howie, 1995) if its idempotents 
commute. For a∈S, V(a) := {x∈S | a = axa, x = xax} is the set of all inverses of a and 
W(a) := {x∈S | x = xax} is the set of all weak inverses (Howie, 1995) of a. A 
congruence ρ on a semigroup S is called a band congruence (Petrich, 1973) if (a, a2)∈ρ  
for all a∈S and a band congruence ρ  on a semigroup S is called a semilattice 
congruence (Petrich, 1973) if (ab, ba)∈ρ  for all a, b∈S. A band congruence ρ  is a 
rectangular band congruence if (a, aba)∈ρ for all a, b∈S. Basic properties and 
results of E-inversive E-semigroup were given by Mitsch (1990), Zheng (1997) and 
Weipoltshammer (2002). 

In this paper, we investigated characterizations of semilattice congruences on 
an E-inversive E-semigroup and an inverse congruence which we used full and 
weakly self-conjugate subsemigroups of a semigroup.  
 The following results are used in this research. 
 
Lemma 1.1. (Weipoltshammer, 2002) A semigroup S is an E-inversive semigroup if 
and only if W(a) ≠ ∅ for all a∈S.  
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Proposition 1.2.  Let S be an E-inversive semigroup, and a∈S. If x∈W(a) then  
x∈W(axa),  axa∈W(x) and xax∈W(a). 
Proof. Let x∈W(a). Then x = xax = x(axa)x. Therefore x∈W(axa). Consider, axa = 
a(xax)a = axaxaxa = (axa)x(axa) and xax = xaxaxax = (xax)a(xax). Thus axa∈W(x) 
and xax ∈W(a).          
 
Proposition 1.3. (Weipoltshammer, 2002)  For any semigroup S, S is an E-semigroup if 
and only if W(ab) = W(b)W(a) for all a, b∈S. 
 
Proposition 1.4. (Weipoltshammer, 2002) Let S  be an E-semigroup. Then 
   (i)  for all a∈S, a′∈W(a), e, f∈E(S), ea′, a′f, fa′e∈W(a), 
  (ii)  for all a∈S, a′∈ W(a), e∈E(S), a′ea, aea′∈E(S), 
 (iii)  for all e∈ E(S), W(e) ⊆E(S),  
 (iv)  for all e, f∈E(S), W(ef) = W(fe). 
 
MAIN RESULTS 
 
 In this section, we find some special conditions for a semilattice congruence 
and an inverse congruence on E-inversive E-semigroups. Any semigroup S, the 
natural partial order (Mitsch, 1990) ≤  on S is defined by  
  a ≤ b if and only if a = xb = by, xa = a = ay for some x, y∈S1.   
For a∈S, if a ≥ e for some e∈E(S) then e = xa = ay and ay∈E(S). A subset E(a), a∈S, 
of an E-inversive semigroup S is definned by 
  E(a) := {e∈E(S) | a ≥ e}. 
 
Proposition 2.1.  Let S be an E-inversive semigroup. A relation ρ  on E(S) is defined 
by ρ := {(a, b)∈E(S)×E(S) | eaf = ebf  for all e, f∈E(S)}. 
   (i) If E(S) is a rectangular band then ρ is a rectangular band congruence on 
E(S). 
 (ii) If E(S) is a normal band then ρ is a semilattice congruence on E(S). 
Proof.  (i) Clearly, ρ  is an equivalence relation on E(S). Let a, b, c∈E(S) be such that 
aρb.  
Let e, f ∈E(S). Then cf, ec∈E(S)  since E(S) is a regtangular band. By the definition of 
ρ, we have eacf = ebcfc and ecaf = ecbf, it follows that acρbc and caρcb. Thus ρ  is a 
congruence on E(S). For all a, e, f∈E(S), eaf = ea2f, so a2ρa. Since E(S) is rectangular, 
aρaba for all a, b∈ E(S). Hence ρ is a rectangular band congruence on E(S). 
 (ii) If E(S) is a normal band, then eabf = ebaf for all a, b, e, f∈E(S). Hence 
abρba for all a, b∈E(S). Therefore ρ is a semilattice congruence on E(S).   
           
 
Proposition 2.2.  Let S be an E-inversive E-semigroup and let γ  be a rectangular 
band congruence on E(S). Then γ-class is a semilattice if and only if for all e, f∈ E(S), 
eγf  if and only if ef = fe. 
Proof.  Suppose that γ-class is a semilattice. Let e, f∈E(S) be such that eγf. Then eγ = 
fγ.  Note that e∈eγ = fγ  and f∈fγ = eγ, so e, f∈eγ. By assumption, we have ef = fe. On 
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the other hand, let e, f∈ E(S) be such that ef = fe. Since efγ (ef)fγ (fe)fγf  and efγfeγ 
(fe)eγ (ef)eγe, we have eγf. 
 

Clearly, if eγf if and only if ef = fe for all e, f∈E(S), then γ-class is a 
semilattice.          

          
An E-inversive semigroup S is said to satisfy a condition (∗) if  

for all x, y∈S, xy, yx∈ E(S), implies xy = yx. 
The following results satisfy a condition (∗).  
 
Lemma 2.3.  Let S be an E-inversive semigroup satisfying a condition (∗). If  ab = e 
and  e∈ E(S) then bea = e.  
Proof.  Since (bea)(bea) = b(eabe)a = b(eee)a = bea, we have bea∈E(S). Since abe = 
ee = e, we have bea = abe = e  by a condition (∗).     
           
 
Lemma 2.4.  Let S be an E-inversive semigroup satisfying a condition (∗). For all 
a∈S,     e∈ E(S), a ≥ e if and only if e∈S1aS1 .  
Proof.   Suppose that a ≥ e, then there exist x, y∈S1 such that e = xa = ay. Hence 
e∈S1aS1. 

Suppose that e∈S1aS1, then there exist x, y∈S1 such that e = xay. By Lemma 
2.3, a(yex) = e and (yex)a = e. Since yex ∈S1, we have a ≥ e.   
           
 
Theorem 2.5.  If S is an E-inversive semigroup satisfying a condition (∗) then a 
relation 

η := {(a, b)∈ S ×S | E(a) = E(b)}  
is a semilattice congruence on S. 
Proof.  Clearly, η is an equivalence relation. We shall show that η is a compatible. 
Let a, b, c∈S  be such that aηb. Suppose that e∈E(S) such that ac ≥ e. Then there 
exists x∈S1 such that a(cx) = e. By Lemma 2.3, cxea = e. Hence a ≥ e. Since E(a) = 
E(b), b ≥ e and so there exists y∈S1 such that yb = e and we have (yb)(cxea) = e. Note 
that bc(xeaey) = e (by Lemma 2.3) and (xeaeye)bc = e (by Lemma 2.3). Then bc ≥ e 
and so E(ac) ⊆ E(bc). Similarly, we can show that E(bc) ⊆ E(ac). Thus E(ac) = E(bc) 
and acηbc. The similar argument, we can show that caηcb. Therefore η is a 
congruence on S. 
 To show that S/η is a band, let a∈S. If a2 ≥ e then there exist x, y∈S1 such that 
e = a2x = ya2, hence e = a(ax) = (ya)a where ax, ya∈S1 which implies that a ≥ e, so 
E(a2) ⊆ E(a).  

Conversely, if a ≥ e, then there exist x, y ∈S1 such that e = xa = ay. Thus e = 
ee = (xa)(ay) = xa2y. Hence e∈S1a2S1, so a2 ≥ e by Lemma 2.4. Therefore E(a2) = E(a) 
and a2ηa.   
 Finally, we shall show that abηba for all a, b∈S. Let a, b∈S. Suppose that ab 
≥ e. Then there exist x, y∈S1 such that e = abx = yab. By Lemma 2.3, we obtain that 
   e = bxea = bx(yab)a = (bxya)ba 
and  
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e = beya = b(abx)ya = ba(bxya).  
Thus ba ≥ e and so E(ab) ⊆ E(ba). Similarly, we can show that E(ba) ⊆ E(ab), 
therefore abηba and hence η is a semilattice congruence on S.    
           
 

The last theorem, some conditions are given to find an inverse congruence on        
E-inversive semigroup. Recall that an inverse semigroup S is a regular semigroup in 
which every element of S has a unique inverse or S is a regular semigroup and its 
idempotents commute. On an orthodox semigroup S, the least inverse congruence γ is 
given by  γ = {(a, b)∈S×S | V(a) = V(b)} (Hall, 1969). On an E-inversive E-semigroup, 
if we replace V(a) and V(b) by W(aea′) and W(beb′) respectively, then we obtain an 
inverse congruence on an      E-inversive E-semigroup as follows: 
 
Theorem 2.6.  Let S be an E-inversive semigroup and let γ  be a relation defined by 
         γ  := {(a,b)∈S×S | there exist a′∈W(a), b′∈W(b) such that W(aea′) = W(beb′) for 
all 
                  e∈E(S)}. 
If E(S) is a rectangular band then γ  is an inverse congruence on S. 
Proof.  Since E(S) is a rectangular band, S is an E-semigroup. Clearly, γ is reflexive 
and symmetric. We shall show that γ is transitive, let a, b, c∈S be such that aγb and 
bγc. Then there exist a′∈W(a) and b′∈W(b) such that W(aea′) = W(beb′) for all 
e∈E(S) and there exist b*∈W(b) and c′∈W(c) such that W(beb*) = W(cec′) for all 
e∈E(S). Since b′, b*∈W(b), by Proposition 1.4 (ii), we have beb′, beb* ∈E(S) for all 
e∈E(S). By Proposition 1.4 (ii) again and E(S) is a rectangular band, we have W(beb′) 
= W(b(eb*be)b′ ) = W((beb*)(beb′)) = W((beb′)(beb*)) = W(b(eb′be)b*) = W(beb*). 
Hence W(aea′) = W(cec′) for all e∈E(S) and so γ  is transitive.  

To show that γ  is a compatible, let a, b, c∈S  be such that aγb. Then there 
exist a′∈W(a) and b′∈W(b)  such that W(aea′) = W(beb′) for all e∈E(S). For e∈E(S), 
by Proposition 1.4 (ii), we have cec′∈E(S) where c′∈W(c). Then W(a(cec′)a′) = 
W(b(cec′)b′) and W[(ac)e(c′a′)] = W[(bc)e(c′b′)] where c′a′∈W(ac) and c′b′∈W(bc) 
by Proposition 1.3. Hence acγ bc. 

For c∈S, c′∈W(c), W(cec′) = W(cec′)  for all e∈E(S). For e∈E(S), we have 
aea′, beb′∈E(S). Thus 
  W[(ca)e(a′c′)]  =  W[c(aea′)c′]  
    =  W(c′)W(aea′)W(c)   (by Proposition 1.3) 
    =  W(c′)W(beb′)W(c)  
    =  W[c(beb′)c′]    (by Proposition 1.3)  
    =  W[(cb)e(b′c′)].  
Note that a′c′∈W(ca) and b′c′∈W(cb). Therefore caγ cb and so γ  is a congruence on 
S. To show that γ  is a regular congruence on S, let a∈S. Then aγa and W(aea′) = 
W(aea′) for all e∈E(S), where a′∈W(a). By Proposition 1.2, a′∈W(aa′a) for all 
a′∈W(a).  

For e∈E(S), a′∈W(a) and by Proposition 1.4(ii), we have aea′∈E(S). 
Consider,  
             W(aea′) =  W[(aea′)(aa′)] 
    =  W[(aa′)(aea′)]         (by Proposition 1.4(iv)) 
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    =  W[(aa′a)ea]. 
Therefore aγ (aa′a) and so γ  is a regular congruence on S. 

To show that γ  is an inverse congruence on S, let g, h∈E(S). Since S is an E-
semigroup, by Proposition 1.4(iv), we have W(gh) = W(hg) and W(gh) = W(h)W(g). 
Consider 
  W[(gh)h(hg)]  =   W(hg)W(h)W(gh)   (by Proposition 1.3) 
    =   W(gh)W(h)W(hg)  
    =   W[(hg)h(gh)].  
Note that hg∈W(gh) and gh∈W(hg) by Proposition 1.3. Hence ghγhg. Therefore γ  is 
an inverse congruence on S.        
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