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ABSTRACT

A congruence p on a semigroup S is a semilattice congruence on S if S/p is a
semilattice. A semigroup S is called an E-inversive semigroup if for every aeS there is an
element x in S such that ax is idempotent. In this paper, we investigated a semilattice
congruence and an inverse congruence on E-inversive semigroups.
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INTRODUCTION

In 1955, Thierrin introduced the concept of an E-inversive semigroup. A
semigroup S is called an E-inversive semigroup (Mitsch, 1990) if for every aS there
exists xe$S such that ax is idempotent. Let E(S) denote the set of all idempotents of a
semigroup S. A semigroup S is called an E-semigroup (Weipoltshammer, 2002) if E(S)
forms a subsemigroup of S. A semigroup S is said to be a band if every element of S
is idempotent, and a band S is rectangular (Clifford and Preston, 1961, p.10) if for all X,
yeS, x = xyx. A subsemigroup T of a semigroup is normal if abcd = acbd for all a,
b, ¢, deT . A commutative band is a semilattice (Clifford and Preston, 1961). An
element a of a semigroup S is called regular if there exists x in S such that a = axa. A
semigroup S is a regular semigroup (Howie, 1995) if all its elements are regular. A
regular semigroup S is called an inverse semigroup (Howie, 1995) if its idempotents
commute. For a€S, V(a) := {xeS | a = axa, x = xax} is the set of all inverses of a and
W(a) := {xeS | x = xax} is the set of all weak inverses (Howie, 1995) of a. A
congruence p on a semigroup S is called a band congruence (Petrich, 1973) if (a, a%)ep
for all aeS and a band congruence p on a semigroup S is called a semilattice
congruence (Petrich, 1973) if (ab, ba)ep for all a, beS. A band congruence p is a
rectangular band congruence if (a, aba)ep for all a, beS. Basic properties and
results of E-inversive E-semigroup were given by Mitsch (1990), Zheng (1997) and
Weipoltshammer (2002).

In this paper, we investigated characterizations of semilattice congruences on
an E-inversive E-semigroup and an inverse congruence which we used full and
weakly self-conjugate subsemigroups of a semigroup.

The following results are used in this research.

Lemma 1.1. (Weipoltshammer, 2002) A semigroup S is an E-inversive semigroup if
and only if W(a) = & for all a€S.
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Proposition 1.2. Let S be an E-inversive semigroup, and aeS. If xeW(a) then
xeW(axa), axaeW(x) and xaxeW(a).

Proof. Let xeW(a). Then x = xax = x(axa)x. Therefore xeW(axa). Consider, axa =
a(xax)a = axaxaxa = (axa)x(axa) and xax = xaxaxax = (xax)a(xax). Thus axacW(x)
and xax eW(a). 0

Proposition 1.3. (Weipoltshammer, 2002) For any semigroup S, S is an E-semigroup if
and only if W(ab) = W(b)W(a) for all a, beS.

Proposition 1.4. (Weipoltshammer, 2002) Let S be an E-semigroup. Then
(i) forall acS, a’'eW(a), e, feE(S), ea’, a'f, fa’'eeW(a),
(ii) forall acS, a’'e W(a), ecE(S), a’ea, aea’€E(S),
(iii) for all ee E(S), W(e) cE(S),
(iv) for all e, feE(S), W(ef) = W(fe).

MAIN RESULTS

In this section, we find some special conditions for a semilattice congruence
and an inverse congruence on E-inversive E-semigroups. Any semigroup S, the
natural partial order (Mitsch, 1990) < on S is defined by

a<b ifand only if a = xb = by, xa = a = ay for some x, yeS".
For aeS, if a > e for some ecE(S) then e = xa = ay and ay<E(S). A subset E(a), a<S,
of an E-inversive semigroup S is definned by

E(a) ;= {ecE(S)|a>e}.

Proposition 2.1. Let S be an E-inversive semigroup. A relation p on E(S) is defined
by p:={(a, b)eE(S)XE(S) | eaf = ebf for all e, feE(S)}.

(i) If E(S) is a rectangular band then p is a rectangular band congruence on
E(S).

(ii) If E(S) is a normal band then p is a semilattice congruence on E(S).
Proof. (i) Clearly, p is an equivalence relation on E(S). Let a, b, ceE(S) be such that
apb.
Lete, f €E(S). Then cf, eceE(S) since E(S) is a regtangular band. By the definition of
o, We have eacf = ebcfc and ecaf = ecbf, it follows that acpbc and capch. Thus p is a
congruence on E(S). For all a, e, feE(S), eaf = ea’f, so a’pa. Since E(S) is rectangular,
apaba for all a, be E(S). Hence pis a rectangular band congruence on E(S).

(ii) If E(S) is a normal band, then eabf = ebaf for all a, b, e, feE(S). Hence
abpba for all a, beE(S). Therefore pis a semilattice congruence on E(S).

0

Proposition 2.2. Let S be an E-inversive E-semigroup and let » be a rectangular
band congruence on E(S). Then j-class is a semilattice if and only if for all e, fe E(S),
e)f if and only if ef = fe.

Proof. Suppose that j-class is a semilattice. Let e, feE(S) be such that e)f. Then ey =
fy. Note that ecey=fy and fefy = ey, so e, feey. By assumption, we have ef = fe. On
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the other hand, let e, fe E(S) be such that ef = fe. Since efy (ef)fy (fe)f)f and efjfey
(fe)ey (ef)ese, we have eA.

Clearly, if e)f if and only if ef = fe for all e, feE(S), then jclass is a
semilattice.
O
An E-inversive semigroup S is said to satisfy a condition () if
for all x, yeS, xy, yxe E(S), implies xy = yx.
The following results satisfy a condition ().

Lemma 2.3. Let S be an E-inversive semigroup satisfying a condition (). If ab=¢
and ee E(S) then bea =e.
Proof. Since (bea)(bea) = b(eabe)a = b(eee)a = bea, we have beacE(S). Since abe =
ee = e, we have bea = abe = e by a condition (*).

U

Lemma 2.4. Let S be an E-inversive semigroup satisfying a condition (*). For all
aeS, ee E(S),axeifandonlyifeeS'as.
Proof. Suppose that a > e, then there exist x, yeS" such that e = xa = ay. Hence
eeSas’.
Suppose that eeSaS!, then there exist x, yeS* such that e = xay. By Lemma
2.3, a(yex) = e and (yex)a = e. Since yex €S*, we have a > e.
|

Theorem 2.5. If S is an E-inversive semigroup satisfying a condition () then a
relation
n:={(a b)e SxS|E(a) = E(b)}

is a semilattice congruence on S.
Proof. Clearly, 7 is an equivalence relation. We shall show that 7 is a compatible.
Let a, b, ceS be such that arb. Suppose that ecE(S) such that ac > e. Then there
exists xeS* such that a(cx) = e. By Lemma 2.3, cxea = e. Hence a > e. Since E(a) =
E(b), b > e and so there exists yeS* such that yb = e and we have (yb)(cxea) = e. Note
that bc(xeaey) = e (by Lemma 2.3) and (xeaeye)bc = e (by Lemma 2.3). Then bc > e
and so E(ac) < E(bc). Similarly, we can show that E(bc) < E(ac). Thus E(ac) = E(bc)
and acnbc. The similar argument, we can show that carncb. Therefore 7 is a
congruence on S.

To show that S/7 is a band, let acS. If a® > e then there exist x, yeS" such that
e = a’ = ya®, hence e = a(ax) = (ya)a where ax, yaeS* which implies that a > e, so
E(@% < E(a).

Conversely, if a > e, then there exist x, y eStsuch that e = xa = ay. Thuse =
ee = (xa)(ay) = xa’y. Hence ecS'a’S", so a? > e by Lemma 2.4. Therefore E(a°) = E(a)
and a’a.

Finally, we shall show that abzba for all a, beS. Let a, beS. Suppose that ab
> e. Then there exist x, yeS* such that e = abx = yab. By Lemma 2.3, we obtain that

e = bxea = bx(yab)a = (bxya)ba

and
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e = beya = b(abx)ya = ba(bxya).
Thus ba > e and so E(ab) < E(ba). Similarly, we can show that E(ba) < E(ab),
therefore abnba and hence 7 is a semilattice congruence on S.
U

The last theorem, some conditions are given to find an inverse congruence on
E-inversive semigroup. Recall that an inverse semigroup S is a regular semigroup in
which every element of S has a unique inverse or S is a regular semigroup and its
idempotents commute. On an orthodox semigroup S, the least inverse congruence yis
given by y={(a, b)eSxS|V(a) = V(b)} (Hall, 1969). On an E-inversive E-semigroup,
if we replace V(a) and V(b) by W(aea’) and W(beb’) respectively, then we obtain an
inverse congruence on an  E-inversive E-semigroup as follows:

Theorem 2.6. Let S be an E-inversive semigroup and let y be a relation defined by

y :={(a,b)eSxS | there exist a’eW(a), b’ eW(b) such that W(aea’) = W(beb") for
all

ecE(S)}.

If E(S) is a rectangular band then y is an inverse congruence on S.
Proof. Since E(S) is a rectangular band, S is an E-semigroup. Clearly, yis reflexive
and symmetric. We shall show that y is transitive, let a, b, ceS be such that ayb and
byc. Then there exist a’eW(a) and b’eW(b) such that W(aea’) = W(beb’) for all
ecE(S) and there exist b*eW(b) and ¢’eW(c) such that W(beb*) = W(cec") for all
ecE(S). Since b, b*eW(b), by Proposition 1.4 (ii), we have beb’, beb* E(S) for all
ecE(S). By Proposition 1.4 (ii) again and E(S) is a rectangular band, we have W(beb")
= W(b(eb*be)b’ ) = W((beb*)(beb’)) = W((beb")(beb*)) = W(b(eb’be)b*) = W(beb*).
Hence W(aea') = W(cec’) for all ecE(S) and so y is transitive.

To show that y is a compatible, let a, b, ceS be such that a)b. Then there
exist a’eW(a) and b’eW(b) such that W(aea’) = W(beb') for all ecE(S). For ecE(S),
by Proposition 1.4 (ii), we have cec’'eE(S) where ¢’eW(c). Then W(a(cec')a’) =
W(b(cec")b’) and W[(ac)e(c'a’)] = W[(bc)e(c'b")] where c’a’eW(ac) and c’b’eW(bc)
by Proposition 1.3. Hence acy bc.

For ceS, ¢'eW(c), W(cec') = W(cec’) for all ecE(S). For ecE(S), we have
aea’, beb’€E(S). Thus

W[(ca)e(a'c’)] = W[c(aea’)c']

= W(c")W(aea)W(c) (by Proposition 1.3)
= W(c")W(beb")W(c)

= W[c(beb’)c'] (by Proposition 1.3)
= WI(cb)e(b'c")].

Note that a’c’eW(ca) and b'c’ eW(cb). Therefore caych and so y is a congruence on
S. To show that y is a regular congruence on S, let acS. Then ajya and W(aea') =
W(aea’) for all ecE(S), where a’eW(a). By Proposition 1.2, a’eW(aa’'a) for all
a’'eW(a).

For ecE(S), a’eW(a) and by Proposition 1.4(ii), we have aea’ €E(S).
Consider,

W(aea’) = WJ(aea’)(aa)]

W[(aa')(aea’)] (by Proposition 1.4(iv))
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= W[(aa'a)ea].
Therefore ay (aa’'a) and so y is a regular congruence on S.

To show that y is an inverse congruence on S, let g, heE(S). Since S is an E-
semigroup, by Proposition 1.4(iv), we have W(gh) = W(hg) and W(gh) = W(h)W(g).
Consider

WI[(gh)h(hg)] W(hg)W(h)W(gh) (by Proposition 1.3)
W(gh)W(h)W(hg)
W[(hg)h(gh)].
Note that hgeW(gh) and gheW(hg) by Proposition 1.3. Hence ghyhg. Therefore y is
an inverse congruence on S.
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