Semilattice Congruences on *E*-inversive Semigroups

Manoj Siripitukdet* and Supavinee Sattayaporn

Department of Mathematics, Naresuan University, Phitsanulok 65000 Thailand *Corresponding author. E-mail: manojs@nu.ac.th

ABSTRACT

A congruence ρ on a semigroup *S* is a semilattice congruence on *S* if S/ρ is a semilattice. A semigroup *S* is called an *E*-inversive semigroup if for every $a \in S$ there is an element *x* in *S* such that ax is idempotent. In this paper, we investigated a semilattice congruence and an inverse congruence on *E*-inversive semigroups.

2000 Mathematics Subject Classification : 20M10.

Keywords : E-inversive semigroup, semilattice, semilattice congruences, inverse congruence

INTRODUCTION

In 1955, Thierrin introduced the concept of an E-inversive semigroup. A semigroup S is called an *E-inversive semigroup* (Mitsch, 1990) if for every $a \in S$ there exists $x \in S$ such that ax is idempotent. Let E(S) denote the set of all idempotents of a semigroup S. A semigroup S is called an *E-semigroup* (Weipoltshammer, 2002) if E(S)forms a subsemigroup of S. A semigroup S is said to be a *band* if every element of Sis idempotent, and a band S is rectangular (Clifford and Preston, 1961, p.10) if for all x, $y \in S$, x = xyx. A subsemigroup T of a semigroup is normal if abcd = acbd for all a, b, c, $d \in T$. A commutative band is a *semilattice* (Clifford and Preston, 1961). An element a of a semigroup S is called *regular* if there exists x in S such that a = axa. A semigroup S is a regular semigroup (Howie, 1995) if all its elements are regular. A regular semigroup S is called an *inverse semigroup* (Howie, 1995) if its idempotents commute. For $a \in S$, $V(a) := \{x \in S \mid a = axa, x = xax\}$ is the set of all *inverses* of a and $W(a) := \{x \in S \mid x = xax\}$ is the set of all weak inverses (Howie, 1995) of a. A congruence ρ on a semigroup S is called a *band congruence* (Petrich, 1973) if $(a, a^2) \in \rho$ for all $a \in S$ and a band congruence ρ on a semigroup S is called a *semilattice* congruence (Petrich, 1973) if $(ab, ba) \in \rho$ for all $a, b \in S$. A band congruence ρ is a rectangular band congruence if $(a, aba) \in \rho$ for all $a, b \in S$. Basic properties and results of E-inversive E-semigroup were given by Mitsch (1990), Zheng (1997) and Weipoltshammer (2002).

In this paper, we investigated characterizations of semilattice congruences on an *E*-inversive *E*-semigroup and an inverse congruence which we used full and weakly self-conjugate subsemigroups of a semigroup.

The following results are used in this research.

Lemma 1.1. (Weipoltshammer, 2002) A semigroup *S* is an *E*-inversive semigroup if and only if $W(a) \neq \emptyset$ for all $a \in S$.

Proposition 1.2. Let *S* be an *E*-inversive semigroup, and $a \in S$. If $x \in W(a)$ then $x \in W(axa)$, $axa \in W(x)$ and $xax \in W(a)$.

Proof. Let $x \in W(a)$. Then x = xax = x(axa)x. Therefore $x \in W(axa)$. Consider, axa = a(xax)a = axaxaxa = (axa)x(axa) and xax = xaxaxax = (xax)a(xax). Thus $axa \in W(x)$ and $xax \in W(a)$.

Proposition 1.3. (Weipoltshammer, 2002) For any semigroup *S*, *S* is an *E*-semigroup if and only if W(ab) = W(b)W(a) for all $a, b \in S$.

Proposition 1.4. (Weipoltshammer, 2002) Let S be an *E*-semigroup. Then

- (i) for all $a \in S$, $a' \in W(a)$, $e, f \in E(S)$, ea', $a'f, fa'e \in W(a)$,
- (ii) for all $a \in S$, $a' \in W(a)$, $e \in E(S)$, a'ea, $aea' \in E(S)$,
- (iii) for all $e \in E(S)$, $W(e) \subseteq E(S)$,
- (iv) for all $e, f \in E(S)$, W(ef) = W(fe).

MAIN RESULTS

In this section, we find some special conditions for a semilattice congruence and an inverse congruence on *E*-inversive *E*-semigroups. Any semigroup *S*, the natural partial order (Mitsch, 1990) \leq on *S* is defined by

 $a \le b$ if and only if a = xb = by, xa = a = ay for some $x, y \in S^1$. For $a \in S$, if $a \ge e$ for some $e \in E(S)$ then e = xa = ay and $ay \in E(S)$. A subset $E(a), a \in S$, of an *E*-inversive semigroup *S* is defined by

 $E(a) := \{ e \in E(S) \mid a \ge e \}.$

Proposition 2.1. Let *S* be an *E*-inversive semigroup. A relation ρ on *E*(*S*) is defined by $\rho := \{(a, b) \in E(S) \times E(S) \mid eaf = ebf \text{ for all } e, f \in E(S)\}.$

(i) If E(S) is a rectangular band then ρ is a rectangular band congruence on E(S).

(ii) If E(S) is a normal band then ρ is a semilattice congruence on E(S).

Proof. (i) Clearly, ρ is an equivalence relation on E(S). Let $a, b, c \in E(S)$ be such that $a\rho b$.

Let $e, f \in E(S)$. Then $cf, ec \in E(S)$ since E(S) is a regtangular band. By the definition of ρ , we have eacf = ebcfc and ecaf = ecbf, it follows that $ac\rho bc$ and $ca\rho cb$. Thus ρ is a congruence on E(S). For all $a, e, f \in E(S), eaf = ea^2 f$, so $a^2 \rho a$. Since E(S) is rectangular, $a\rho aba$ for all $a, b \in E(S)$. Hence ρ is a rectangular band congruence on E(S).

(ii) If E(S) is a normal band, then eabf = ebaf for all $a, b, e, f \in E(S)$. Hence $ab\rho ba$ for all $a, b \in E(S)$. Therefore ρ is a semilattice congruence on E(S).

Proposition 2.2. Let *S* be an *E*-inversive *E*-semigroup and let γ be a rectangular band congruence on E(S). Then γ -class is a semilattice if and only if for all $e, \underline{f} \in E(S)$, $e\gamma f$ if and only if ef = fe.

Proof. Suppose that γ -class is a semilattice. Let $e, f \in E(S)$ be such that $e\gamma f$. Then $e\gamma = f\gamma$. Note that $e \in e\gamma = f\gamma$ and $f \in f\gamma = e\gamma$, so $e, f \in e\gamma$. By assumption, we have ef = fe. On

the other hand, let $e, f \in E(S)$ be such that ef = fe. Since $ef\gamma(ef)f\gamma(fe)f\gamma f$ and $ef\gamma fe\gamma(fe)e\gamma(ef)e\gamma e$, we have $e\gamma f$.

Clearly, if $e\gamma f$ if and only if ef = fe for all $e, f \in E(S)$, then γ -class is a semilattice.

An *E*-inversive semigroup *S* is said to satisfy a condition (*) if for all $x, y \in S, xy, yx \in E(S)$, implies xy = yx. The following results satisfy a condition (*)

The following results satisfy a condition (*).

Lemma 2.3. Let *S* be an *E*-inversive semigroup satisfying a condition (*). If ab = e and $e \in E(S)$ then bea = e.

Proof. Since (bea)(bea) = b(eabe)a = b(eee)a = bea, we have $bea \in E(S)$. Since abe = ee = e, we have bea = abe = e by a condition (*).

Lemma 2.4. Let *S* be an *E*-inversive semigroup satisfying a condition (*). For all $a \in S$, $e \in E(S)$, $a \ge e$ if and only if $e \in S^1 a S^1$. **Proof.** Suppose that $a \ge e$, then there exist $x, y \in S^1$ such that e = xa = ay. Hence $e \in S^1 a S^1$.

Suppose that $e \in S^1 a S^1$, then there exist $x, y \in S^1$ such that e = xay. By Lemma 2.3, a(yex) = e and (yex)a = e. Since $yex \in S^1$, we have $a \ge e$.

Theorem 2.5. If *S* is an *E*-inversive semigroup satisfying a condition (*) then a relation

$$\eta := \{(a, b) \in S \times S \mid E(a) = E(b)\}$$

is a semilattice congruence on S.

Proof. Clearly, η is an equivalence relation. We shall show that η is a compatible. Let $a, b, c \in S$ be such that $a\eta b$. Suppose that $e \in E(S)$ such that $ac \ge e$. Then there exists $x \in S^1$ such that a(cx) = e. By Lemma 2.3, cxea = e. Hence $a \ge e$. Since $E(a) = E(b), b \ge e$ and so there exists $y \in S^1$ such that yb = e and we have (yb)(cxea) = e. Note that bc(xeaey) = e (by Lemma 2.3) and (xeaeye)bc = e (by Lemma 2.3). Then $bc \ge e$ and so $E(ac) \subseteq E(bc)$. Similarly, we can show that $E(bc) \subseteq E(ac)$. Thus E(ac) = E(bc) and $ac\eta bc$. The similar argument, we can show that $ca\eta cb$. Therefore η is a congruence on S.

To show that S/η is a band, let $a \in S$. If $a^2 \ge e$ then there exist $x, y \in S^1$ such that $e = a^2x = ya^2$, hence e = a(ax) = (ya)a where $ax, ya \in S^1$ which implies that $a \ge e$, so $E(a^2) \subseteq E(a)$.

Conversely, if $a \ge e$, then there exist $x, y \in S^1$ such that e = xa = ay. Thus $e = ee = (xa)(ay) = xa^2y$. Hence $e \in S^1a^2S^1$, so $a^2 \ge e$ by Lemma 2.4. Therefore $E(a^2) = E(a)$ and $a^2\eta a$.

Finally, we shall show that $ab \eta ba$ for all $a, b \in S$. Let $a, b \in S$. Suppose that $ab \ge e$. Then there exist $x, y \in S^1$ such that e = abx = yab. By Lemma 2.3, we obtain that e = bxea = bx(yab)a = (bxya)ba

and

e = beya = b(abx)ya = ba(bxya). Thus $ba \ge e$ and so $E(ab) \subseteq E(ba)$. Similarly, we can show that $E(ba) \subseteq E(ab)$, therefore $ab \eta ba$ and hence η is a semilattice congruence on *S*.

The last theorem, some conditions are given to find an inverse congruence on *E*-inversive semigroup. Recall that an inverse semigroup *S* is a regular semigroup in which every element of *S* has a unique inverse or *S* is a regular semigroup and its idempotents commute. On an orthodox semigroup *S*, the least inverse congruence γ is given by $\gamma = \{(a, b) \in S \times S \mid V(a) = V(b)\}$ (Hall, 1969). On an *E*-inversive *E*-semigroup, if we replace V(a) and V(b) by W(aea') and W(beb') respectively, then we obtain an inverse congruence on an *E*-inversive *E*-semigroup as follows:

Theorem 2.6. Let *S* be an *E*-inversive semigroup and let γ be a relation defined by $\gamma := \{(a,b) \in S \times S \mid \text{there exist } a' \in W(a), b' \in W(b) \text{ such that } W(aea') = W(beb') \text{ for } W(b) \in W(b) \in W(b) \}$

all

 $e \in E(S)$.

If E(S) is a rectangular band then γ is an inverse congruence on S.

Proof. Since E(S) is a rectangular band, S is an E-semigroup. Clearly, γ is reflexive and symmetric. We shall show that γ is transitive, let a, b, $c \in S$ be such that $a\gamma b$ and $b\gamma c$. Then there exist $a' \in W(a)$ and $b' \in W(b)$ such that W(aea') = W(beb') for all $e \in E(S)$ and there exist $b^* \in W(b)$ and $c' \in W(c)$ such that $W(beb^*) = W(cec')$ for all $e \in E(S)$. Since b', $b^* \in W(b)$, by Proposition 1.4 (ii), we have beb', $beb^* \in E(S)$ for all $e \in E(S)$. By Proposition 1.4 (ii) again and E(S) is a rectangular band, we have W(beb') $= W(b(eb^*be)b') = W((beb^*)(beb')) = W((beb')(beb^*)) = W(b(eb'be)b^*) = W(beb^*)$. Hence W(aea') = W(cec') for all $e \in E(S)$ and so γ is transitive.

To show that γ is a compatible, let $a, b, c \in S$ be such that $a\gamma b$. Then there exist $a' \in W(a)$ and $b' \in W(b)$ such that W(aea') = W(beb') for all $e \in E(S)$. For $e \in E(S)$, by Proposition 1.4 (ii), we have $cec' \in E(S)$ where $c' \in W(c)$. Then W(a(cec')a') = W(b(cec')b') and W[(ac)e(c'a')] = W[(bc)e(c'b')] where $c'a' \in W(ac)$ and $c'b' \in W(bc)$ by Proposition 1.3. Hence $ac\gamma bc$.

For $c \in S$, $c' \in W(c)$, W(cec') = W(cec') for all $e \in E(S)$. For $e \in E(S)$, we have *aea'*, $beb' \in E(S)$. Thus

$$W[(ca)e(a'c')] = W[c(aea')c']$$

= W(c')W(aea')W(c) (by Proposition 1.3)
= W(c')W(beb')W(c)
= W[c(beb')c'] (by Proposition 1.3)
= W[(cb)e(b'c')].

Note that $a'c' \in W(ca)$ and $b'c' \in W(cb)$. Therefore $ca\gamma cb$ and so γ is a congruence on *S*. To show that γ is a regular congruence on *S*, let $a \in S$. Then $a\gamma a$ and W(aea') = W(aea') for all $e \in E(S)$, where $a' \in W(a)$. By Proposition 1.2, $a' \in W(aa'a)$ for all $a' \in W(a)$.

For $e \in E(S)$, $a' \in W(a)$ and by Proposition 1.4(ii), we have $aea' \in E(S)$. Consider,

$$W(aea') = W[(aea')(aa')]$$

= W[(aa')(aea')] (by Proposition 1.4(iv))

$$= W[(aa'a)ea].$$

Therefore $a\gamma(aa'a)$ and so γ is a regular congruence on S.

To show that γ is an inverse congruence on *S*, let *g*, $h \in E(S)$. Since *S* is an *E*-semigroup, by Proposition 1.4(iv), we have W(gh) = W(hg) and W(gh) = W(h)W(g). Consider

$$W[(gh)h(hg)] = W(hg)W(h)W(gh)$$
(by Proposition 1.3)
$$= W(gh)W(h)W(hg)$$
$$= W[(hg)h(gh)].$$

Note that $hg \in W(gh)$ and $gh \in W(hg)$ by Proposition 1.3. Hence $gh\gamma hg$. Therefore γ is an inverse congruence on *S*.

REFERENCES

- Clifford, A.H. and Preston, G.B. (1961). The Algebraic Theory of Semigroups. Vol. I, Math. Surveys, *Amer. Math. Soc.* 7, Providence, R.I.
- Hall, T.E. (1969). On regular semigroups whose idempotents form a sub-semigroup. *Bull. Austral. Math. Soc.*, *1*, 195-208.
- Howie, J.M. (1995). Fundamentals of Semigroup Theory, Oxford, Clarendon Press.
- Mitsch, H. (1990). Subdirect products of E-inversive Semigroups. J. Aus-tral.Math. Soc., 48A, 66-78.
- Petrich, M. (1973). Introduction to Semigroups. Merill, Columbus, Ohio.
- Weipoltshammer, B. (2002). Certain Congruences on E-inversive E-semigroups, *Semigroup Forum.*, 65, 233-248.
- Zheng, H. (1997). Group Congruences on E-inversive semigroup, *Southeast Asian Bull. Math.* 21, 1-8.