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ABSTRACT 

 
In this paper, we established some weak and strong convergence theorems for a 

multi-step iterative scheme with errors for a finite families of asymptotically nonexpansive 
nonself-mappings in Banach spaces. Our results extended and improve the recent ones 
announced by Wang [Strong and weak convergence theorems for common fixed points of 
nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl., 323(2006)550-557.] 
and Chidume, Ali [Approximation of common fixed points for finite families of nonself 
asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 326(2007) 
960-973.]  
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INTRODUCTION 
 

Let K be a nonempty subset of a real normed space E. A self mapping  
T : K → K  is called nonexpansive if  || Tx  – Ty ||  ≤  || x – y || for all x, y ∈ K and 
asymptotically nonexpansive if there exists a sequence {kn}⊂ [1, ∞) with  kn → 1 as  
n → ∞ such that for all n ∈ , 

 || Tnx  – Tny ||   ≤    kn || x – y ||       for all  x, y ∈ K. 
T is called uniformly L-Lipschitzian if there exists a real number L > 0 such that  
 || Tnx  – Tny ||   ≤    L|| x – y ||         for all  x, y ∈ K. 
and integers n ≥ 1. The class of asymptotically nonexpansive mappings was 
introduced by Goebel and Kirk (1972) and the class forms an important 
genealization of that of nonexpansive mappings. It was prove by Goebel and Kirk 
(1972) that if K is a nonempty closed convex subset of a real uniformly convex 
Banach space and T is an asymptotically nonexpansive self mapping on K, then T 
has a fixed point. 
 Iterative methods for approximating fixed points of nonexpansive mappings 
have been studied by many authors. In most of these papers, the well-known Mann 
iteration process (Mann, 1953), x1 ∈ K, 
 

 xn+1 = (1 – αn)xn + αnTxn  ,     n  ≥ 1,               (1) 
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has been studied and the operator T has been assumed to map K into itself. The   
convexity of K then ensures that the sequence {xn} generated by (1) is well defined. 
If, however, K is a proper subset of the real Banach space E and T maps K into E (as 
is the case in many applications), then the sequence given by (1) may not be well 
defined. One method that has been used to overcome this in the case of single 
operator T is to introduce a retraction P : E → K in the recursion formula (1) as 
follows: x1 ∈ K,  
 

 xn+1 = (1 – αn)xn + αnPTxn  ,     n  ≥ 1. 
 

Recent results on approximation of fixed points of nonexpansive and asymptotically 
nonexpansive self and nonself single mappings can be found.  

The concept of nonself asymptotically nonexpansive mapping was 
introduced by Chidume et al. (2003) as an important generalization of 
asymptotically nonexpansive self mappings.  
 

Definition 1. (Chidume, Ofoedu, and Zegeye, 2003) Let K be a nonempty subset of 
a real normed space E. Let P : E → K be a nonexpansive retraction of E onto K. A 
nonself mapping T : K → E is called asymptotically nonexpansive if there exists a 
sequence {kn} ⊂ [1, ∞) with  kn → 1 as n → ∞  such that for every n ∈ , 
 || T(PT)n-1x –  T(PT)n-1y ||   ≤   kn || x – y ||  for every x, y ∈ K. 
T is said to be uniformly L-Lipschitzian if there exists a constant  L > 0  such that  
 || T(PT)n-1x –  T(PT)n-1y ||   ≤   L || x – y ||  for every x, y ∈ K. 
 

Using an Ishikawa-like scheme (Ishikawa, 1974), Takahashi and Tamura (1998) 
proved strong and weak convergence of a sequence defined by  
 

 xn+1 =  αnS[βnTxn + (1 – βn) xn] + (1 – αn) xn 
 

to common fixed point of a pair of nonexpansive mappings T and S. Recently, Wang 
(2006) was introduced and iteration scheme for approximating common fixed points 
of two nonself asymptotically nonexpansive mappings and to proved some strong 
and weak convergence theorem for such mappings in uniformly convex Banach 
spaces.  

It is our purpose in this paper to introduce a mult-step iteration process with 
errors for approximating common fixed points for finite families of nonself 
asymptotically nonexpansive mappings. For these families of operators, we prove 
strong convergence theorem in uniformly convex Banach spaces, and prove weak 
convergence theorem in real uniformly convex Banach spaces that satisfy Opial’s 
condition, or have Frechet differentiable norm. Our theorems generalize many recent 
results.  
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PRELIMINARIES 
 

Let E be a real Banach space and J denote the normalized duality mapping 
from E to 

*

2E define by  
 

 J(x)  =  { f  ∈ E* : 〈x , f〉 = ||x||2, || f || = ||x|| }, 
 

where E*
 
denotes the dual space of E and  〈⋅,⋅〉 denotes the generalized duality 

pairing between elements of E and E*
 
. Let E be a real normed linear space. The 

modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by  
 

( )  inf 1  :  =  = 1,  = .
2E

x y x y x yδ ε ε
⎧ + ⎫

= − −⎨ ⎬
⎭⎩

   

 

Notation. We use → for strong convergence and w⎯⎯→  for weak convergence. 
 

E is called uniformly convex if and only if  ( ) 0,  (0, 2].Eδ ε ε> ∀ ∈  The norm of E 
is said to be Frechet differentiable if for each x ∈ E with ||x|| = 1 the limit  
 

 lim t→0
x ty x

t
+ −

 

exists and is attained uniformly for y, with || y || = 1. A subset K of E is said to be a 
retract of E if there exists a continuous map P : E → K such that Px = x  ∀x ∈ K. 
Every closed convex set of a uniformly convex Banach space is a retract. A map  
P : E → E  is said to be a retraction if P

2 
= P . It follows that if a map P is a 

retraction, then Py = y  ∀y ∈ R(P ), the range of P . A mapping T with domain D(T ) 
and range R(T ) in E is said to be demiclosed at p if whenever {xn} is a sequence in 
D(T ) such that xn w⎯⎯→ x*∈ D(T ) and Txn → p then Tx*

 
=  p.  

 A mapping T : K → K is said to be semicompact if, for any bounded 
sequence  {xn} in K such that  || xn  – Txn || → 0 as n → ∞, there exists a subsequence 
say {xnj } of {xn} such that {xnj } converges strongly to some x* in K. T is said to be 
completely continuous if for every bounded sequence {xn}, there exists a 
subsequence say {xnj } of {xn} such that the sequence {Txnj } converges to some 
element of the range of T .  
 A Banach space E is said to satisfy Opial’s condition if for any sequence 
{xn}  in E, xn w⎯⎯→ x implies that 
 

 lim inf n →∞||xn + x||  <  lim inf n →∞||xn + y|| ∀y ∈ E,   y ≠ x. 
 
 

In what follows we shall use the following results.  
 
Lemma 2. (Tan and Xu, 1993) Let {λn} and {σn} be sequences of nonnegative real 
numbers such that  λn+1  ≤  λn + σn ∀n ≥ 1, and 1n

∞
=∑ σn < ∞, then limn→∞ λn exists. 
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Moreover, if there exists a subsequence {λnj } of {λn} such that λnj → 0 as j → ∞ then 
λn → 0 as n → ∞.  
 

Lemma 3. (Schu, 1991) Let E be a real uniformly convex Banach space and  
0 ≤ p ≤ tn ≤ q< 1 for all positive integers n ≥ 1. Suppose that xn and yn are two 
sequences of E such that  
 

       lim supn →∞||xn||  ≤  r,   lim supn →∞||yn||  ≤  r   and   limn →∞||tnxn+(1–tn)yn||  =  r 
 

hold for some r ≥ 0, then limn→∞||xn − yn|| = 0. 
Lemma 4. (Chidume et al., 2003) Let E be a real uniformly convex Banach space, K 
a nonempty closed subset of E, and let T : K → E be asymptotically nonexpansive 
mapping with a sequence {kn}⊂ [1, ∞) and kn → 1 as n → ∞, then  
(I − T ) is demiclosed at zero.  
 
Lemma 5. (Tan and Xu, 1993) Let {an}, {bn} and {δn} be sequences of nonnegative 
real numbers satisfying the inequality  
 

 an+1   ≤  (1 + δn) an + bn , ∀n = 1,2,… 
 

If  1n
∞
=∑

 
δn < ∞ and  1n

∞
=∑ bn < ∞, then limn→∞ an exists.  

 
Lemma 6. (Kaczor, 2002) Let E be a real uniformly convex Banach space whose 
dual E*

 
satisfies the Kadec-Klee property Let {xn} be a bounded sequence in E and 

x*,y* ∈ })({ nw xω  (where })({ nw xω  denote the weak limit set of {xn}).  

Suppose limn →∞||txn + (1 − t)x*
 
− y*|| exists for all t ∈ [0, 1]. Then, x* = y*.  

 
Lemma 7. (Falset et al., 2001) Let E be a uniformly convex Banach space and K a 
convex subset of E. Then there exists a strictly increasing continuous convex 
function :φ + +→

 
with (0) 0φ =  such that for each Lipschitz mapping S : K → 

K with Lipschitz constant L, we have,  
1 1|| (1 ) ( (1 ) ) ||   || || || ||Sx Sy S x y L x y Sx Sy

L
α α α α φ− ⎛ ⎞+ − − + − ≤ − − −⎜ ⎟

⎝ ⎠
 

for all x,y ∈ K and 0 < α < 1. 
 
MAIN RESULTS 
 

In this section we state and prove the main results of this paper. In the 

sequel, we designate the set 1, 2,..., N by I and we always assume 
1

( )
N

ii
F T φ

=
≠∩ . 

We now introduce the following iteration scheme: 
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 1 ,x K∈  

 (1) (1) (1) 1 (1)
1 1((1 ) ( ) ),n

n n n n n nx P x T PT x vα α −= − + +  

 (2) (2) (2) 1 (1) (2)
2 2((1 ) ( ) ),n

n n n n n nx P x T PT x vα α −= − + +         (2)  
  
 ( ) ( ) ( ) 1 1 ( )

1 ((1 ) ( ) ),    1.N N N n N N
n n n n n N N n nx x P x T PT x v nα α − −
+ = = − + + ≥  

 
Lemma 8.  Let E be a real uniformly convex Banach space and K be a closed 
convex nonempty subset of E which is also a nonexpansive retract with a retaction 
P. Let T1,T2,...,TN : K → E be asymptotically nonexpansive mappings with 

1
( )

N
ii

F T φ
=

≠∩  and { }( )

1

i
n n

k
∞

=
satisfy ( )

1( 1)i
n nk∞
=∑ − <∞  for all {1,2, , }i N∈ … . Let  

{ }( )

1

i
n n

α
∞

=
 be a sequence in [ ,1 ], (0,1)ε ε ε− ∈  for all {1,2, , }i N∈ … . Let {xn} be a 

sequence defined iteratively by (2). Then limn→∞||xn − x*|| exists for all  

x*∈ 
1

( )
N

ii
F T

=∩ . 

 
Proof.  Setting ( ) ( )1 , 1, 2, , .i i

n nk i Nλ= + ∀ = …  Since ( )
1( 1)i

n nk∞
=∑ − <∞ , so 

( )
1( ) , 1,2, , .i

n n i Nλ∞
=∑ <∞ ∀ = …  For any x*∈ 

1
( )

N
ii

F T
=∩ , by (3.1), we have 

 

(1) (1) (1) 1 (1)
1 1

(1) (1) 1 (1)
1 1

(1) (1) (1) (1)
n n

|| * ||   || ((1 ) ( ) ) * ||

                   ||(1 )( *) ( ( ) *) ||

                   (1 )|| * || (1 )|| * || || |

n
n n n n n n

n
n n n n n

n n n n

x x P x T PT x v x

x x T PT x x v

x x x x v

α α

α α

α α λ

−

−

− = − + + −

≤ − − + − +

≤ − − + + − +
(1) (1)

|

                   (1 )|| * || || ||,n n nx x vλ≤ + − +

 

and 
 

(2) (2) (2) 1 (1) (2)
1 1

(2) (2) 1 (1) (2)
1 1

(2) (2) (2) (1)

|| * ||   || ((1 ) ( ) ) * ||

                   (1 )|| * || || ( ( ) * || || ||

                   (1 )|| * || (1 ) ||

n
n n n n n n

n
n n n n n

n n n n n

x x P x T PT x v x

x x T PT x x v

x x x

α α

α α

α α λ

−

−

− = − + + −

≤ − − + − +

≤ − − + +

{ }

{ }

(2)

(2) (2) (2) (1) (1)

(2)

(2) (1) (2) (2) (1)

* || || ||

                   (1 )|| * || (1 ) (1 )|| * || || ||

                        || ||

                   1 (1 ) || * || (1 ) || ||

n

n n n n n n n

n

n n n n n n

x v

x x x x v

v

x x v

α α λ λ

λ λ λ λ

− +

≤ − − + + + − +

+

≤ + + + − + + (2)|| || .nv+

 

 

Moreover, we have  
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(3) (3) (3) (3) (2) (3)

(3) (3) (3) (2) (1) (2)

(2) (1)

|| * ||   (1 )|| * || (1 ) || * || || ||

                   (1 )|| * || (1 ){[1 (1 )]|| * ||

                        (1 ) || ||

n n n n n n n

n n n n n n n n

n n

x x x x x x v

x x x x

v

α α λ

α α λ λ λ λ

λ

− ≤ − − + + − +

≤ − − + + + + + −

+ +

{ }
(2) (3)

(3) (3) (3) (2) (1) (2)

(3) (3) (2) (1) (3) (3) (2) (3)

|| ||} || ||

                   (1 ) (1 ) 1 (1 ) || * ||

                        (1 )(1 ) || || (1 ) || || || ||

         

n n

n n n n n n n

n n n n n n n n

v v

x x

v v v

α α λ λ λ λ

α λ λ α λ

+ +

⎡ ⎤= − + + + + + −⎣ ⎦

+ + + + + +

{ }(3) (2) (3) (1) (3) (2)

(3) (2) (1) (3) (2) (3)

          1 (1 ) (1 )(1 ) || * ||

                        (1 )(1 ) || || (1 ) || || || ||
n n n n n n n

n n n n n n

x x

v v v

λ λ λ λ λ λ

λ λ λ

≤ + + + + + + −

+ + + + + +

 

and 
 

(4) (4) (4) (4) (3) (4)

(4) (4) (4) (3) (2) (3)

(1) (3) (2)

|| * ||   (1 )|| * || (1 ) || * || || ||

                   (1 )|| * || (1 ){[1 (1 )

                        (1 )(1 )]||

n n n n n n n

n n n n n n n

n n n n

x x x x x x v

x x

x

α α λ

α α λ λ λ λ

λ λ λ

− ≤ − − + + − +

≤ − − + + + + +

+ + + (3) (2) (1)

(3) (2) (3) (4)

(4) (4) (4) (3) (2) (3)

(1)

* || (1 )(1 ) || ||

                        (1 ) || || || ||} || ||

                   {(1 ) (1 )[1 (1 )

                        (1

n n n

n n n n

n n n n n n

n n

x v

v v v

λ λ

λ

α α λ λ λ λ

λ λ

− + + +

+ + + +

= − + + + + +

+ + (3) (2)

(4) (4) (3) (2) (1)

(4) (4) (3) (2) (4) (4) (3) (4)

)(1 )]}|| * ||

                        (1 )(1 )(1 ) || ||

                        (1 )(1 ) || || (1 ) || || || ||

n n

n n n n n

n n n n n n n n

x x

v

v v v

λ

α λ λ λ

α λ λ α λ

+ −

+ + + +

+ + + + + +

 

                      

(4) (3) (4) (2) (4) (3)
n n

(1) (4) (3) (2)

(4) (3) (2) (1) (4) (3) (2)
n n n n n

(4) (3) (4)
n

 {1 (1 ) (1 )(1 )

    (1 )(1 )(1 )} || * ||

   (1 )(1 )(1 )|| || (1 )(1 )|| ||

    (1 )|| || || || .

n n n n

n n n n n

n n

n n

x x

v v

v v

λ λ λ λ λ λ

λ λ λ λ

λ λ λ λ λ

λ

≤ + + + + + +

+ + + + −

+ + + + + + +

+ + +

 

 

By continuing the above method, we obtain 
 

( ) ( ) ( ) ( -1) ( )
1

( ) ( 1) ( ) ( 2) ( ) ( 1)

(1) ( ) ( 1)

|| * ||   (1 ) || * || (1 ) || - * || || ||

                    {1 (1 ) (1 )(1 )

                        (1 )(1 ) (1

N N N N N
n n n n n n n

N N N N N N
n n n n n n

N N
n n n

x x x x x x vα α λ

λ λ λ λ λ λ

λ λ λ

+

− − −

−

− ≤ − − + + +

≤ + + + + + + +…

+ + + … (2)

( ) ( 1) (2) (1)

( ) ( 1) (3) (2)

( ) ( 1) ( 2

)} || * ||

                        (1 )(1 ) (1 ) || ||

                        (1 )(1 ) (1 ) || ||

                        (1 )(1 ) ||

n n

N N
n n n n

N N
n n n n

N N N
n n n

x x

v

v

v

λ

λ λ λ

λ λ λ

λ λ

−

−

− −

+ −

+ + + +

+ + + + +

+ + +

…
… …

) ( ) ( 1) ( )|| (1 ) || || || ||
                    (1 ) || * ||

N N N
n n n

n n n

v v
x x b

λ
δ

−+ + +
= + − +
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where  
( ) ( 1) ( ) ( 2) ( ) ( 1)

(1) ( ) ( 1) (2)

 (1 ) (1 )(1 )

        (1 )(1 ) (1 )

N N N N N N
n n n n n n n

N N
n n n n

δ λ λ λ λ λ λ

λ λ λ λ

− − −

−

= + + + + + +

+ + + +

…
…

 

and 
( ) ( 1) (2) (1)

( ) ( 1) (3) (2)

( ) ( 1) ( 2) ( ) ( 1) ( )

  (1 )(1 ) (1 )|| ||

         (1 )(1 ) (1 )|| ||

         (1 )(1 )|| || (1 )|| || || || .

N N
n n n n n

N N
n n n n

N N N N N N
n n n n n n

b v

v

v v v

λ λ λ

λ λ λ

λ λ λ

−

−

− − −

= + + +

+ + + + +

+ + + + + +

…
… …  

Thus 1n
∞
=∑

 
δn < ∞ and 1n

∞
=∑ bn < ∞. It follows from Lemma 4 that limn→∞||xn − x*|| 

exists. The proof is complete. 
 

■ 
Lemma 9.  Let E be a real uniformly convex Banach space and K be a closed 
convex nonempty subset of E which is also a nonexpansive retract with a retaction 
P. Let T1,T2,...,TN : K → E be asymptotically nonexpansive mappings with 

1
( )

N
ii

F T φ
=

≠∩  and { }( )

1

i
n n

k
∞

=
 satisfy ( )

1( 1)i
n nk∞
=∑ − <∞  for all {1,2, , }i N∈ … . Let  

{ }( )

1

i
n n

α
∞

=
 be a sequence in [ ,1 ], (0,1)ε ε ε− ∈  for all {1,2, , }i N∈ … . Let {xn} be a 

sequence defined iteratively by (2). Then limn→∞||xn − Tixn || = 0 for all 
1,2, , .i N= …  

 
Proof.  By Lemma 8, limn→∞||xn − x*|| exists. Let  
 

limn→∞||xn − x*||  =  c.                (3) 
 

For any positive integer h with 2  ≤ h ≤ N, we note that 
 

( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)

(1) ( ) ( 1) (2) ( )

( ) ( 1)

|| * ||   {1 (1 ) (1 )(1 )

                        (1 )(1 ) (1 )}|| * || || ||

                        (1 ) || || (1

h h h h h h h
n n n n n n n

h h h
n n n n n n

h h
n n

x x

x x v

v

λ λ λ λ λ λ

λ λ λ λ

λ λ

− − −

−

−

− ≤ + + + + + + +

+ + + + − +

+ + + +

…
…

( ) ( 1) ( ) ( 1) ( 2)

( ) (2) ( ) ( 1) ( ) (2)

( 1) ( 2) ( 1) (2) (1)

) || ||

                        {1

                        } || ||

h h h h h
n n n n n

h h h h
n n n n n n

h h h
n n n n n

v

v

λ λ λ

λ λ λ λ λ λ

λ λ λ λ

− − −

−

− − −

+ + +

+ + + + + + +

+ + +

…
… …
…

 

and   
1 ( 1) ( ) ( 1)|| ( ) * ||   (1 ) || * || .n h h h

h h n n nT PT x x x xλ− − −− ≤ + −  

 

From (4) and (5), we have  

(4) 

(5) 
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( ) ( ) ( 1) ( )

( 2) ( ) ( 1)

(1) ( ) ( 1)

limsup || * ||   lim sup {[1 (1 )

                                         (1 )(1 )

                                         (1 )(1 ) (

h h h h
n n n n n n

h h h
n n n

h h
n n n

x x λ λ λ

λ λ λ

λ λ λ

−
→∞ →∞

− −

−

− ≤ + + +

+ + + +

+ + +

…
… (2)

( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( 2) ( ) (2)

1 )] || * ||

                                          || || (1 ) || || (1

                                         ) || || [1

       

n n

h h h h h
n n n n n

h h h h
n n n n n

x x

v v

v

λ

λ λ λ

λ λ λ λ

− −

− −

+ −

+ + + + + +

+ + + + + +… …
( ) ( 1) ( ) (2) ( 1) ( 2)

( 1) (2) (1)

                                  

                                         ] || ||}
                                      .

h h h h h
n n n n n n

h
n n nv

c

λ λ λ λ λ λ

λ λ

− − −

−

+ + + + +

+
≤

… …

 

and 
 

    { }1 ( 1) ( ) ( 1)lim sup || ( ) * ||   lim sup (1 ) || * ||

                                                         .

n h h h
n h h n n n nT PT x x x x

c

λ− − −
→∞ →∞− ≤ + −

≤
 

Moreover, we note that 
 

   

1
( ) ( ) ( ) 1 ( 1) ( )

( ) ( ) ( )

( )

  lim || * ||
    lim || * ||

    lim || (1 )( * ) ( ( ) * ) ||

    lim (1 ) || * || lim (1 ) || ||

        lim sup || ( )

n n

n n
N N N n N N

n n n n n N N n n
N N N

n n n n n n
N n

n n N N

c x x
x x

x x v T PT x x v

x x v

T PT

α α

α α

α

→∞

→∞ +

− −
→∞

→∞ →∞

→∞

= −

= −

≤ − − + + − +

≤ − − + −

+ 1 ( 1) ( ) ( )* || lim || ||
    .

N N N
n n n nx x v

c
α− −

→∞− +
=

 

 

By Lemma 3, we obtain 
 

        1 ( 1)lim || ( ) ||   0.n N
n n N N nx T PT x− −
→∞ − =  

 

Hence, by (7), we also have 
 

                                1 ( 1)lim sup || ( ) * ||   .n N
n N N nT PT x x c− −
→∞ − ≤  

Note that 
 

         
1 ( 1) 1 ( 1)

1 ( 1) ( ) ( 1)

|| * ||   || ( ) || || ( ) * ||

                  || ( ) || (1 ) || * || .

n N n N
n n N N n N N n

n N N N
n N N n n n

x x x T PT x T PT x x

x T PT x x xλ

− − − −

− − −

− ≤ − + −

≤ − + + −
 

 

Thus, by (8), we have 
 

                    ( 1) lim inf || * ||   lim inf || * ||N
n n n nc x x x x−
→∞ →∞= − ≤ −  

 

and hence 
 

           ( 1) ( 1)  lim inf || * ||   lim sup || * ||   .N N
n n n nc x x x x c− −
→∞ →∞≤ − ≤ − ≤  

 

(6) 

(7) 

(8) 

(9) 
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This implies 
                                            ( 1)lim || * ||   .N

n nx x c−
→∞ − =  

Hence 

                         
( 1) ( 1)

( 1) 1 ( 2) ( 1)
1 1

  lim || (1 )( * )

       ( ( ) * ) || .

N N
n n n n

N n N N
n N N n n

c x x v

T PT x x v

α

α

− −
→∞

− − − −
− −

= − − +

+ − +
 

 

Similarly by (7) and Lemma 3, we obtain 
 

                          1 ( 2)
1 1lim || ( ) ||   0.n N

n n N N nx T PT x− −
→∞ − −− =  

 

Continuting in this fashion, we note that 
 

                              1 ( 1)lim || ( ) ||   0.n h
n n h h nx T PT x− −
→∞ − =  

 

For all {1,2, , }h N∈ … , and so 
                                           ( )lim || * ||   .h

n nx x c→∞ − =  
Note that 
 

      

1 1 ( 1)

1 ( 1) 1

1 ( 1) ( ) ( 1

|| ( ) ||   || ( ) ||

                                       || ( ) ( ) ||

                                  || ( ) || (1 ) || (1

n n h
n h h n n h h n

n h n
h h n h h n

n h h h
n h h n n n

x T PT x x T PT x

T PT x T PT x

x T PT x λ α

− − −

− − −

− − −

− ≤ −

+ −

≤ − + + − )

( 1) 1 ( 2) ( 1)
1 1

1 ( 1)

( 1) ( )

)

                                       ( ) ||

                                  || ( ) ||

                                       (1 )

n
h n h h

n h h n n n

n h
n h h n

h h
n n

x

T PT x v x

x T PT x

α

α λ

− − − −
− −

− −

−

+ + −

≤ −

+ + 1 ( 2)
1 1

( ) ( 1)

|| ( ) ||

                                       (1 ) || || .

n h
n h h n

h h
n n

x T PT x

vλ

− −
− −

−

−

+ +

 

Thus, we have 
                                 1lim || ( ) ||   0.n

n n h h nx T PT x−
→∞ − =  

 

Since for each i, Ti is asymptotically nonexpansive, there exists a 
Lipschitzain constant Li > 0 such that  

 

            

1 1 1 ( 1)

1 ( 1)

1 ( ) ( 1)

|| ||   || ( ) || || ( ) ( ) ||

                         || ( ) ||

                     || ( ) || (1 ) || ||

               

n n n h
n h n n h h n h h n h h n

n h
h h n h n

n h h
n h h n n n n

x T x x T PT x T PT x T PT x

T PT x T x

x T PT x x xλ

− − − −

− −

− −

− ≤ − + −

+ −

≤ − + + −
2 ( 1)          || ( ) ||n h

h h n nL T PT x x− −+ −

 

 

where 1  max { }.i N iL L≤ ≤=  From (12) and (13), we have 
 

                                       lim || ||   0.n n h nx T x→∞ − =  
 

For 1lim || ||   0,n n nx T x→∞ − =  it follows that 

(10) 

(11) 

(12) 

(13) 
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(1) (1) (1) 1 (1)
1 1

(1) (1) (1) (1)

(1) (1) (1)

|| * ||   || ((1 ) ( ) ) * ||

                   (1 ) || * || (1 ) || * || || ||

                    (1 ) || * || || || .

n
n n n n n n

n n n n n n

n n n n

x x P x T PT x v x

x x x x v

x x v

α α

α α λ

α λ

−− = − + + −

≤ − − + + − +

= + − +

 

 

This implies 
                                        (1)lim sup || * ||   .n nx x c→∞ − ≤  

Moreover, we note that 
 

              

1 (1) 1 (1)
1 1 1 1

1 (1) ( 1) (1)
1 1

|| * ||   || ( ) || || ( ) * ||

                  || ( ) || (1 ) || * || .

n n
n n N N n N N n

n N
n N N n n n

x x x T PT x T PT x x

x T PT x x xλ

− −
− − − −

− −
− −

− ≤ − + −

≤ − + + −
 

  

Then, by (11), we get 
                                      (1)  lim inf || * || .n nc x x→∞≤ −  

 

From (14) and (15), we have 
 

                                        (1)lim || * ||   .n nx x c→∞ − =  

Moreover, we note that 
 

                          

(1)

(1) (1) 1 (1)
1 1

(1) (1) (1) 1 (1)
1 1

  lim || * ||

    lim || (1 ) ( ) * ||

    lim || (1 )( * ) ( ( ) * ) ||
    .

n n
n

n n n n n n
n

n n n n n n n

c x x

x T PT x v x

x x v T PT x x v
c

α α

α α

→∞

−
→∞

−
→∞

= −

≤ − + + −

= − − + + − +

≤

 

 
 

By Lemma 3, we have 
                                    1

1 1lim || ( ) ||   0.n
n n nx T PT x−
→∞ − =  

Note that 
 

                            

1 1
1 1 1 1 1 1

1 2
1 1 1 1

|| ||   || ( ) || || ( ) ||

                    || ( ) || || ( ) || .

n n
n n n n n n

n n
n n n n

x T x x T PT x T PT x T x

x T PT x L T PT x x

− −

− −

− ≤ − + −

≤ − + −
 

 

Thus, we have 
                                                                                                             1lim || ||   0.n n nx T x→∞ − =  

Since 
 

    

1 ( 2) 1 ( 2)
1 1 1 1

1 ( 2) 2 ( 2)
1 1 1 1

|| ||   || ( ) || || ( ) ||

                      || ( ) || || ( ) ||,

n N n N
n N n n N N n N N n N n

n N n N
n N N n N N n n

x T x x T PT x T PT x T x

x T PT x L T PT x x

− − − −
− − − −

− − − −
− − − −

− ≤ − + −

≤ − + −
 

 

it follows that 
                                               lim || ||   0.n n N nx T x→∞ − =  
The proof is complete.   

■ 

(14) 

(15) 
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Theorem 10. Let E be a real uniformly convex Banach space and K be a closed 
convex nonempty subset of E which is also a nonexpansive retract with a retaction 
P. Let T1,T2,...,TN : K → E be asymptotically nonexpansive mappings with 

sequences  { }( )

1

i
n n

k
∞

=
and { }( )

1

i
n n

α
∞

=
 as in Lemma 9. If one of { } 1

N
i i

T
=

is either 

completely continuous or semicompact, then {xn} defined by (2) converges strongly 
to common fixed point of { } 1

N
i i

T
=

. 

Proof. If one of { } 1

N
i i

T
=

 is semicompact, say Ts, s ∈{1, 2,...,N} from the fact that 

lim || || 0n n s nx T x→∞ − = and {xn} is bounded, there exists a subsequence say {xnj } of 
{xn} that converges strongly to some x*∈ K. By Lemma 4 guarantees that  
(I−T )x*

 
= 0, i.e.Tsx = x. From lim || || 0n n i nx T x→∞ − = and the continuity of Ti,  

i = 1, 2,..,N, and using xnj → x as j →∞ we obtain that x*∈ 
1

( )
N

ii
F T

=∩ . By Lemma 

8, lim || * ||n nx x→∞ −  exists and {xn} converges strongly to x* .  

If, on the other hand, one of { } 1

N
i i

T
=

is completely continuous, say Ts, then 
{Tsxn} is bounded, there exists a subsequence {Tsxnj } converging strongly to some 
x . By Lemma 9, lim || || 0

j jj n s nx T x→∞ − = , and by the continuity of Ts, we have 

lim || || 0
jj nx x→∞ − = . Using Lemma 4 as above, x ∈ 

1
( )

N
ii

F T
=∩ . Thus, since 

lim || ||n nx x→∞ −  exists by Lemma 8, we have lim || || 0n nx x→∞ − =  and so {xn} 
converges strongly to x .  The proof is complete.                                                                 

■  
Corollary 11. (Wang, 2006) Let K be a nonempty closed convex subset of a real 
uniformly convex Banach space E. Let T1,T2 : K → K be nonself asymptotically 
nonexpansive mappings with sequences }{},{},{ 121

nnn kk α ,and }{ 2
nα as 

in Lemma 9. If one of T1,T2  is either completely continuous or semicompact, then 
{xn} defined by  
 

Kx ∈1  
 (1) (1) (1) (1)

1(1 ) ( ) ,n
n n n n n nx x T x vα α= − + +  

 (2) (2) (2) (1) (2)
2(1 ) ( )n

n n n n n nx x T x vα α= − + +  
 

converges strongly to common fixed point of T1 and T2.  
 

We now prove weak convergence theorems.  
 
Theorem 12. Let E be a real uniformly convex Banach space and K be a closed 
convex nonempty subset of E which is also a nonexpansive retract with a retraction 
P. Let T1,T2,...,TN : K → E be nonself asymptotically nonexpansive mappings with 

(16) 
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sequences { }( )

1

i
n n

k
∞

=
and { }( )

1

i
n n

α
∞

=
 as in Lemma 9. If E satisfies Opial’s condition or 

has a Frechet differentiable norm, then {xn} defined by (2) converges weakly to 

common fixed point of  { } 1

N
i i

T
=

. 
 
Proof. If E satisfies Opial’s condition the proof follows as in the proof of Theorem 
3.2 of Takahashi and Tamura (1998). If E has Frechet differentiable norm, the proof 
of Theorem 3.10 of Chidume, Ofoedu, and Zegeye (2003), using Lemma 7 instead 
of Lemma 3.9 of Chidume et al. (2003). 

■ 
Corollary 3.6. (Wang, 2006) Let K be a nonempty closed convex subset of a real 
uniformly convex Banach space E. Let T1,T2 : K → K be nonself asymptotically 
nonexpansive mappings with sequences (1) (2) (1){ },{ },{ }n n nk k α ,and (2){ }nα as 
in Lemma 9. If E satisfies Opial’s condition or has a Frechet differentiable norm, 
then {xn} defined by (16) converges weakly to common fixed point of  of T1 and T2.  
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