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ABSTRACT 

  
The aim of this paper is to compare the prediction accuracy between two popular 

approximation model methods namely, artificial neural network (ANN) and Kriging model 

for modeling the output response from computer simulated experiments (CSE).  The natures 

of CSE are time-consuming and computationally expensive to run. Hence, many efforts have 

focused on developing inexpensive and reliable surrogate models to replace the CSE.  

Kriging model along with Latin hypercube designs (LHD) have been widely used               

for developing an accurate surrogate model in the context of CSE. The performance of 

Kriging model is based on the estimation of the unknown parameters. The most popular 

method to estimate these parameters is the maximum likelihood estimate (MLE) method. 

The MLE method is normally time consuming and fails to obtain the best set of parameters 

due to numerical instability and ill-conditioning of the model structure. Due to the popularity 

of ANN in modeling high and complex problem, this paper presents an application of ANN 

in the context of CSE and the comparison with Kriging model is employed. The results 

indicate that ANN performs well in terms of prediction accuracy and can be used as an 

alternative of Kriging model in some features of problem under this study.  

 

Keywords: computer simulated experiments, artificial neural network, Kriging model,  

                 optimal Latin hypercube designs. 

 

 

INTRODUCTION  

  

Nowadays computer simulated experiments (CSE) have been extensively 

used to investigate the complex physical phenomena, especially when the physical 

experiments are not feasible due to cost and time constraints or the limitation of the 

experimental materials.  Some examples of CSE are the use of reservoir simulator to 

predict ultimate recovery of oil (Cheong, 2005), use of finite element codes to 

predict behavior of metal structure under stress and bio-mechanical models to 

predict protein in sheep wool (Koehler and Owen, 1996), and so on.  Generally, 

these computer codes comprise of a system of complex differential equations, 

which, for given setting of input variable conditions ( X ), can be solved numerically 

to obtain the value of output response ( Y ).  For example, a reservoir simulator, for 
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given values of the field characteristic (like Gross rock volume, porosity, gas cap 

etc.), can be run to quantify the ultimate recovery of oil (Y) from the field (Cheong, 

2005).   

Running of computer codes at various settings of input variables to study 

output response is referred to as computer simulated experiment.Setting of input 

variables at which code is operated is referred to as a design ( X ) with each setting 

being referred to as a run. CSE is deterministic in nature; hence identical settings of 

input variables always produce an identical set of output response and typically the 

process of CSE is not known a priori.  Therefore, space filling designs that aim       

to spread design points over a region of interest are very useful (Bates et al., 1996).  

Often, CSEs are computationally expensive to run and may require a large number 

of input factors. Bates et al. (1996) stated that the combination of system 

decomposition experimental design and developing of a surrogate model need to be 

performed in order to decrease the complexity of the problem, therefore the 

approximation model could be effective.  In the view of complexities of the system, 

it is often more desirable to create cheaper surrogate models for the computer codes 

(Simpson et al., 2001), capable of predicting output with high accuracy. Hence 

many efforts have gone to the development of accurate surrogate models based on 

handful of runs.   

There are several statistical models have been proposed for use in CSE. 

Sacks et al. (1989) and Guinta and Watson (1998) compared the prediction accuracy 

between RSM and Kriging model. Simpson et al. (2001) investigated the prediction 

accuracy of various statistical models. According to the results presented in the 

published work, there is no certain conclusion on which statistical model is best for 

any specific problems.  However, Kriging model seems to be the most popular 

method in modeling response from CSE due to its interpolation property which is 

completely accurate when the untried input is nearby the design point (Welch et al., 

1992). The drawback of Kriging model is that the estimation of all unknown 

parameters is so complex and sometimes fails to obtain the best set of parameters 

and hence the prediction accuracy of Kriging model deteriorates.  Some researchers 

focus on enhancement of the parameter estimation method for estimating unknown 

parameters in Kriging model. For instance, Welch et al. (1992) proposed an efficient 

algorithm to estimate the parameters using the maximum likelihood method. 

While Kriging model has received a wide attention in developing the 

surrogate models, there are many other types of statistical models such as 

Multivariate adaptive regression splines (MARS), Radial basis function (RBF) and 

Artificial neural network (ANN) have been adopted to use in the context of CSE. De 

Veaux et al. (1993) did a comparison between MARS and ANN using various 

complexity test problems.  The results indicate that MARS models perform better 

than ANN in some cases especially when the dimension of the problem is small 

whereas ANN is simple to implement and its performance can be improved by 

adapting its architecture.  Hence the aim of this paper is to compare the prediction 

accuracy between the two popular modeling methods namely Kriging and ANN.  

For a specific approximation model, the optimal Latin hypercube designs (OLHD) 

are used. The prediction accuracy of each model is implemented by using root mean 

square error (RMSE).For the sake of completeness, the percentage improvement 
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over ANN (PI) is also presented along with various nonlinear features of test 

problems. 

 

 

THEORY AND RELATED WORKS 

   
KRIGING MODEL 

The first approach of developing a surrogate model for computer simulated 

experiments called Kriging model, was proposed by Sacks et al. (1989).               

This method is based on the idea that the response y can be modeled as a 

polynomial function of input variables and whatever is left can be regarded as a 

realization of stochastic process, Z(x),with mean zero and some form of correlation 

function. Typically y is written as,  

   ( ) ( )
k

y f x Z xj j
j 1

 


                (1) 

, where k is the number of terms used in the model. 

In order to make the model simple, in most of the practical problems, the 

polynomial function part in (1) is taken as a constant (Welch et al.,1992, Sacks       

et al., 1989), 

   ( )y Z x                                    (2) 

Moreover the results obtained from the empirical studies revealed that there 

is no effect in terms of prediction capability (Sacks et al., 1989).  The second part on 

the right of equation (1), Z(x) is considered as a Gaussian correlation function 

(Morris and Mitchell, 1995, Welch et al., 1992, Sacks et al., 1989),  the most 

frequently used form can be written as, 

  ( , ) exp( ). . . .
j

d p
R X X X Xi j j i j

j 1

  


               (3) 

, where d is the number of input variables, 0 p 2j  and 0j  .   

Normally Kriging model is fitted using the idea of generalized least squares 

method, and the problem of estimating all unknown parameters reduces to that of 

estimating the parameters of the correlation function which can be done by the 

method of maximum likelihood estimation (MLE) (Welch et al., 1992, Sacks et al., 

1989).  The maximum likelihood estimators can be obtained by maximizing the log 

likelihood function,  

    ( , , , ) [ ln ln | | ( ) ( ) / ]
12 2 T 1 2l p n R y 1 R y 1
2

                (4) 

Given the correlation parameters   and p in (3), the generalized least 

estimate of   is ˆ ( )T 1 1 T 11 R 1 1 R y    , and the MLE of 2 is  

   ˆ ˆˆ / ( ) ( )2 T 11 n y 1 R y 1                                  (5) 

Substituting ̂ and ˆ 2 into the likelihood function in equation (4), the 

problem is to numerically maximize 
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ˆ( ln ln| |)
1 2n R
2

               (6) 

, which is a function of only the correlation parameters and the data from the 

design used in data collection step. 

After all unknown parameters are obtained, the next step is to build a 

predictor, ˆ( )y x , of ( )y x  to act as a surrogate model for the complex computer 

simulation code.  The best linear unbiased predictor (BLUP) at an untried input x  is 

   ˆ ˆˆ( ) ( ) ( )T 1y x r x R y 1                             (7) 

, where r(x) is the vector of correlation function between error ( ( )Z x ) at n  

design runs and untried input variables ( x ).  

Kriging model has received wide attention in many applications of computer 

simulated experiments due to its interpolation property.  Simpson et al. (2001) 

reported that Kriging is very flexible because of the wide range of choices of the 

correlation functions to be chosen.  However, the estimation of correlation 

parameters by maximizing likelihood function in equation (6) is not straightforward 

as the estimated parameters are very sensitive to initial values and selected design 

points (Welch et al., 1992). 

 

ARTIFICIAL NEURAL NETWORK 

 
Artificial neural network (ANN) is commonly used in sophisticated and 

complex problems (Bozdogan, 2003). Unlike a usual statistical approximation 

model, ANN does not require any assumptions of the model.  This benefits ANN to 

be simple and easy to use in many applications such as science, engineering and 

health science (Ripley, 1993). The inspiration for neural networks was the 

recognition that complex learning systems in animal brains consisted of closely 

interconnected sets of neurons. A particular neural may be relatively simple in 

structure but dense networks of interconnected neurons could perform complex 

learning tasks such as pattern recognitions and approximation models. ANN consists 

of input (p), a data set, which is combined through a combination function such as 

summation ( ) then pass such information into an activation function (f) to produce 

an output response (y) and b is a bias as shown in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1 A simple layout of ANN 
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The summary of ANN process can be rewrite as 

 

( )y f wp b       (8) 

, where w is the weight of each input variable. 

Typically ANN is formed by multiple nodes (in this case symbolized by ) 

as shown in Figure 2. An activation function can be the same or different functions, 

such as linear, sigmoid and symmetrical hard limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ANN with multiple nodes 

 

The entire process can be rewritten as,  

 
1 1 1 1
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 

    (9) 

, where N is the number of nodes.  

 

RESEARCH METHODS 

 

 As mentioned before that the aim of this study is to compare the prediction 

accuracy of Kriging and ANN models with respect to the prediction accuracy for 

any untried input variables. The prediction accuracy is implemented by using 

various test problems selected from the literature (Allen et al., 2003, Ye et al., 

2000).  There are four different test problems have been used to compare the 

prediction accuracy between Kriging and ANN models.  The test problems are 

classified into two groups with respect to the feature of the response, namely non-
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complex (smooth response) and complex (highly nonlinear and sharp change in 

some area of the response).  The test problems consist of two-dimension problems, 

seven-dimension problem and ten-dimension problem.  The 121 grid points were 

used as test points in order to ensure the coverage of design space for two-dimension 

test problems.  In the case of seven and ten dimensional test problems, the 500 

random test points were used to validate the prediction accuracy of those three 

statistical models. The details of all test problems are given in Table 1.   

 

Table 1 Problems with main and interaction effect 

Problem d Function 

RM2 2 ( , ) . ( )1 1
1 2 1 2 1 2f x x 0 5 x x x 5x      

,1 21 x x 100   

Branin 

function 

2 
( , ) . cos( )

2
2

1
1 2 2 1 1

x 5 1
f x x x 5 1 x 6 10 1 x 10

2 8  

      
                  

 

,1 25 x 10 0 x 15      

Cyclone 

model 

7 

 

    

0.85
31

1 2 7
5 2 1

3/2
0.56 1.16

4 2 4 2

6 7

, ,..., 174.42

1 2.62 1 0.36 / /

xx
f x x x

x x x

x x x x

x x



  
   

  

 

 

1 2 3

4 5 6

7

;0.09 0.11,0.27 0.33,0.09 0.11,

0.09 0.11,1.35 1.65,14.4 17.6,

0.675 0.825

x x x

x x x

x

     

     

 

 

10D 

Function 

10 10
2

1

3 16 16
sin 1 sin 1

10 15 15
i i

i

y x x


    

        
                                      

1 1, 1,2,...,10ix i     
 

 

In order to implement the accuracy of the models, the OLHD designs are 

generated by the enhanced of simulated annealing algorithm (SA) under
p

optimality criteria (Morris and Mitchell, 1995).  For two-dimension problems, the 

designs with 9 runs were used, the designs with 99 runs were used for seven-

dimension problem, and the designs with 201 runs were used for ten-dimension 

problem. 

From all test problems stated above, we fit Kriging and ANN models by 

using the DACE and ANN toolbox in MATLAB.  After Kriging and ANN models 

for all cases is fitted, the prediction accuracy is implemented by using the Root mean 

squared error (RMSE), computed as 
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ˆ( )
k 2

i i
i 1

y y

RMSE
k






                                      (10) 

, where k  is the number of  random test points, yi  is the actual response of 

the i
th
 test point and ŷi  is the predicted response from Kriging and ANN models for 

the i
th
 test point.  Further, the percentage improvement over ANN, defined as 

 

        

 
100%

RMSE ANN RMSE Kriging
PI

RMSE ANN


              (11) 

, is also computed in order to compare the performance of Kriging and ANN 

models.  

 

RESULTS AND DISCUSSION 

 

In this section the Kriging and ANN models are compared on the basis of 

RMSE and PI values.  For each dimension and test problem, the 10 different OLHD 

designs were generated.  The average of RMSE and PI values obtained from 10 

OLHD designs are presented in Table 2.  

As can be seen from Table 2, RMSE values generated from Kringing are 

considerably larger than that of ANN, especially for 10D function test problem.  

This indicates that using ANN as an approximation model leads to higher prediction 

accuracy.  Table 2 also provides the scaled measurement of error, called percentage 

improvement over ANN (PI).  This scaled measurement benefits in the ignorance of 

the differences in error magnitude of different test problems.  The PI values also 

confirm that ANN is superior to Kringing as PI is approximately 52.0% 

improvement for RM2 test problem, 16.25% for Cyclone model and 61.03% for 

10D function.  In contrast, Kriging performs much better than ANN for Branin 

function (PI = 66.0%).  This indicates that ANN fails to capture the features of the 

sharp change in some areas of the problem.  Therefore, the more complex structure 

of ANN like multi layer perceptron could be performed to conduct a surrogate 

model. 

 

Table 2 Comparison of RMSE from all test problems 

     Test Problem 
                 RMSE 

Kring ANN 

RM2 

PI 

7.812 

-52.00 
5.138 

      Branin function 

PI 
29.390 

66.00 

86.412 

      Cyclone 

PI 

0.042 

-16.25 
0.016 

           10D 

             PI 

0.248 

-61.03 
0.154 
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CONCLUSIONS 

 

As presented in the results and discussion section, ANN performs well        

in terms of prediction accuracy and can replace Kriging in some cases of problems.  

The advantage of ANN is that it is free of assumptions and hence a model adequacy 

checking is not required.  In the case that ANN could not perform well, there             

is probably a need of more complex architecture for ANN to conduct the better-

performance approximation model.  Our empirical studies are limited to specific test 

problems. Hence, larger dimensional problems could be future investigated and 

studied to observe the additional conclusions.  Furthermore, it should be noted that   

a success of Kriging and ANN modeling methods normally depend on an underlying 

design that is used to develop a surrogate model. From this empirical study,             

it indicates that an optimal orthogonal LHD is an appropriate design choice for both 

ANN and Kriging modeling methods.  Hence, selecting an optimal LHD critically 

affects the implementation of the surrogate model.   
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