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ABSTRACT 

            In this paper, we compare the estimating parameter in the parametric regression 

model, nonparametric regression model, and semiparametric regression model between 

response variable and two explanatory varaibles. The parametric regression model uses the 

least square method for estimating parameter. The penalized spline method based on 

nonparametric regression method is proposed for estimating function of nonparametric 

regression model, and semiparametric regression model. The minimum of Mean Square Error 

(MSE) is a criterion for choosing the optimal model. Here, we simulate the response variable 

and two explanatory variables that correlated a nonlinear data based on uniform distribution.  

The real data can be applied of these models to illustrate the methodology.  The estimated 

values of nonparametric regression model is a good performance in both of simulated data and 

real data. 

Keywords:  nonparametric regression model, parametric regression model, penalized spline  

                   method, semiparametric regression model  

 

INTRODUCTION 

Regression analysis or parametric regression analysis is a commonly used 

method to investigate the relationship between variables, and obtains the coefficient 

of regression function.  The simplest of regression function consists of a response 

variable (y) and a single explanatory variable (x). The multiple regression function is 

extended from the simple regression function to include additional explanatory 

variables. To obtain useful the regression  analysis, the assumption should  investigate 

before data analysis such as; the variables x and y  describes a linear relationship, the 

variables  y  are normal distribution with continuous variable, the observed  variables 

are independent, and  two explanatory variables (x) occur correlated  variation called 

multicollinearity. 

A parametric regression analysis requires an assumption in underlying 

regression function. A serious drawback of parametric modeling is that a parametric 

model may be too restrictive in some application. If an inappropriate parametric 

regression model is used, it is misleading conclusions from the regression analysis. 

To overcome the difficulty cause by the restrictive assumption of the regression 

function, on may remove the restriction that the regression function belongs to a 
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parametric family. This approach to so-called nonparametric regression(Wu and 

Zhang, 2006).     

The gain of nonparametric regression method is to estimate the smoothing 

function which is produced a smoother directly, rather than to estimate regression 

coefficients.  The smoother is a tool for summarizing the trend of a response variable 

as a function of one or more explanatory variables. The simple nonparametric 

regression model is often called scatter plot smoothing which is used  one explanatory 

variable.  The nonparametric regression method presents more  than one explanatory 

variables called the nonparametric  additive model (David et al., 2003).  There are 

many approaches to estimate nonparametric regression model, e.g., a local polynomial 

regression method (Wand and Jones, 1995 and Fan and Gijbels, 1996), regression 

splines method (Eubank, 1988 and Eubank, 1999), smoothing splines method (Wahba, 

1990 and Green and Silverman, 1994), and penelized splines method (Ruppert et al., 

2003). Moreover, the nonparametric regression model has been developed  for time 

series data which may have a nonlinear relationship. Robinson (1983) suggested the 

nonparametric estimation in the context of time series data. 

The method of nonparametric regression has a long history in the smoothing 

method. Wahba (1990) defined the natural polynomial spline model that used to 

measure the roughness of curve. Green and Silverman (1994) emphasized  the simple 

case of the natural polynomial spline so-called the natural cubic spline. The smoothing 

spline method is considered a least square criterion to fit the natural cubic spline. Stone 

(1977) examined the consistency properties of nonparametric regression estimators in 

local polynomial regression. Fan (1992, 1993) demonstrated the desirable mean 

square error properties, as well as establishing the local linear regression based on 

kernel regression. In the local polynomial regression method, the local neighborhoods 

are specified by a bandwidth  but Eubank (1988, 1999)  introduced the regression 

spline that the local neighborhoods are specified by a group of locations. Penalized 

spline method has developed from regression spline and smoothing spline, which is 

used of fitting and flexible choice of knots and smoothing parameter in nonparametric 

regression model. Ruppert, Wand, and Carroll (2003) described penalized spline 

method based on reduced-knot truncated power function basis with penalties on the 

untransformed coefficients, fitted as a mixed model, and motivated as a simple low-

rank smoothing spline.  

Normally, the estimating function of parametric regression method                             
is reliability and accuracy when the data is set as a continuous variable following  the  

assumption. Nonparametric regression method is a choice to relax the assumption of 

the parametric regression method. The modeling of nonparametric regression method 

is a performance method when the explanatory variable is analyzed by the data with  

nonparametric statistics as a discrete variable and fitted the smoothing function.          
The semiparametric regression consists of continuous variable estimated by 

parametric regression method and discrete variable fitted by nonparametric regression 

method.  

Therefore, we would like to compare the estimating function of parametric 

regression model, nonparametric regression model, and semiparametric regression 

model that  a response and explanatory variables  have to be a nonlinear relationship, 

and two explanatory variables  are multicollinearity based on  continuous  and discrete 
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variables. For data analysis, the parametric regression model uses the least square 

error method to estimate a coefficient of regression  function. The nonparametric 

regression model  is concerned the penalized spline method  to estimate the parameter 

of smoothing function. The semiparametric regression is a mixed model between 

parametric regression model and nonparametric regression model based on penalized 

spline method.  This paper is organized as follows: Section 2 describes the parameter 

estimation of parametric  regression model, nonparametric regression model, and 

semiparametric regression model. Section 3 shows the process and the results of 

simulated data and discuss the results. We apply our proposed models to real data in 

Section 4. Finally, in Section 5, we present the conclusions. 

PARAMETER ESTIMATION 

Parametric Regression Model 

The parametric regression model consists of a response variable, a single 

explanatory variable, and multiple explanatory variables. In this case, we study two 

explanatory variables denoted by the  1 2( , ), 1,2,...,t tx x t n , the regression 

parameters 0 1 2( , , )T    , the regression estimators 
0 1 2

ˆ ( , , )Tb b b  , and the 

errors 1 2( , ,..., )T

n     . The parametric regression model can be written as 

0 1 1 2 2 , 1,2,..., .t t t ty x x t n                     (1)                     

   

The assumptions of error variables are contained  mean  ( ) 0tE   , and 

variance 
2( )tV   . By the error term, t  and k  are not correlated. The sample 

regression model is obtained as follows 

0 1 1 2 2
ˆ , 1,2,..., .t t ty b b x b x t n    .              (2)

                                   

An estimator 
0 1 2

ˆ ( , , )Tb b b  is estimated by the Least Square Error (LSE) 

that specified to minimize the Sum of Square Error (SSE) as 

2

0 1 1 2 2

1

( )
n

t t t

t

SSE y b b x b x


    .                            (3)

    

It is convenient to use matrices to approximate the regression estimators by  

solving  the normal  

equation for  ̂ : 

 ˆT TX X X y  ,                                         (4)                     
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where  y is a 1n  vector, X is a  3n  matrix, and ̂  is a 3 1  vector, given by 

1

2
,

...

n

y

y
y

y

 
 
 
 
 
 

          

11 21

12 22

1 2

1

1
,

... ... ...

1 n n

x x

x x
X

x x

 
 
 
 
 
 

        

0

1

2

ˆ

b

b

b



 
 


 
  

. 

The coefficient of parameter with parametric regression model is evaluated 

by 

 
1ˆ T TX X X y


 .                                         (5)

             

Nonparametric Regression Model 

The nonparametric regression method base on a smoothing technique which 

is produced a smoothing function as a smoother . A smoother is a tool for summarizing 

the trend of a response variable as a function of one or more  explanatory variables.  

We mention a penalized spline method for data analysis in the class of 

nonparametric regression model. Penalized spline method is quite similar to 

smoothing spline method especially more flexible choice of the spline model, the basis 

function, and the penalty function. 

The simple nonparametric regression model consists of  single explanatory 

variable  and response variable, but in this case we focus  two  explanatory variables 

called nonparametric additive model which is written as 

1 2( ) ( )t t t ty f x f x    , t = 1,…,n,             (6)

    

where ty is a response variable, 1( )tf x is a smooth function of 1x , 2( )tf x is a smooth 

function of 2x ,  and  t  is an error term. 

Penalized spline smoother is estimated using truncated power (Ruppert and 

Carroll, 2000), and the penalized spline regression model is rewritten as  

1 2( , , )t t t ty x x    , t = 1,…,n,                                        (7)

       

where 
1 2

1 2

1 1
2 1 2 1

1 2 1 1 2 2

1 1 1 1

( , , ) | | | | , 1,2,..., ,
x xK Km m

x xj m j m

t t j t k t k j t k t k

j k j k

x x x x x x t n       
 

 

   

         
                     (8)                                                                                                                        
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with   
1 1

2 12 1/2 1/2

1 1 1 1 1 1
1

,..., 0, ( ) ,
x x

T mT

K x x x t k k K
t n

N x    
 

 
 

          
, 

and  
2 2

2 12 1/2 1/2

1 2 2 2 2 1
1

,..., 0, ( ) ,
x x

T mT

K x x x t k k K
t n

N x    
 

 
 

          
. 

The penalized spline  regression model are specified  a group of locations in 

a range of  interval [ , ]a b , where  
11 ....

xKa b       and  
21 ....

xKa b    

introduced by Eubank (1988, 1999) .  These locations are known as knots, and 

1, 1,2,...,k xk K   and 2, 1,2,...,k xk K  are called interior knots. We will focus on 

the low-rank thin-plate spline  (m=2)  which tend to fit with the non-linear data. The 

low-rank thin-plate spline is presented by 
1 22 1 2 1

3 3

1 2 1 1 2 2

1 1 1 1

( , , ) | | | |
x xK K

j j

t t j k t k j k t k

j k j k

x x x x x x       
 

   

         ,            (9)

                                                                                                             

where 
1 21 1 1 1( , ,..., , , ,..., )

x x

T

K K        is the vector of penalized spline  

regression model, and 
11 ....

xK   and  
21 ....

xK   are fixed knots. Following 

Ruppert (2002),  we consider a number of knots that is large enough to ensure the 

desired flexibility, and ( , )k k   are  the sample quartile of 1x  and 2x  corresponding 

to probability 1/ ( 1)xk K   and 2/ ( 1)xk K  . To avoid overfitting, we minimize  

                2

1 2

1

( , , )
n

T

t t t

t

y x x D   


  ,             (10)

      

1 2

1 2 1 2 1 2

2 2 2 ( )

( ) 2 ( ) ( )

0 0

0

x x

x x x x x x

K K

K K K K K K

D
  

    

 
  

  

,  and  

1 2

3 32 1 2 1

1 1 2 21 1

1

x x

m m

x t k x t kk K k K

t n

x x    

   

 

 
    

 
, 

where 

2 2

1 22 2
,x x

 

 

 
 

 
   are the smoothing  parameter , and D is known positive 

semi-definite penalty matrix. Smoothing parameter can be approximated by restricted 

maximum likelihood and approximated best linear unbiased prediction (Robinson, 

1991).   

 Just as with the linear model, we can generalize penalized spline in general 

linear mixed model (Brumback et al., 1999) as 

   
Kty X Z     ,                                       (11)
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where y is a 1n  vector, X is a  2n  matrix,   is a 2 1  vector,    is a 

1 2( ) 1x xK K   vector,  

KtZ  is a  1 2( )x xn K K   matrix,   is a 1n  vector,  given by 

1

2
,

...

n

y

y
y

y

 
 
 
 
 
 

          

11 12

21 22

1 2

,
... ...

n n

x x

x x
X

x x

 
 
 
 
 
 

        
1

1






 
  

 
, 

1

2

1

1

x

x

K

K










 
 
 
 
 
 
 
 
  

, 

1 2

1 2

1 2

3 33 3

11 1 11 21 1 21

3 33 3

12 1 12 22 1 22

3 33 3

1 1 1 2 1 2

... ...

... ...
,

... ... ... ... ... ...

... ...

x x

x x

x x

K K

K K
Kt

n n K n n K

x x x x

x x x x
Z

x x x x

   

   

   

    
 
 

    
 
 
 

   
 

and  

1

2

...

n








 
 
 
 
 
 

. 

This class of penalized spline smoothers 
1 2

ˆˆ( , , )x x  may also be expressed 

as 

 
1

1 2
ˆˆ( , , ) ( )T Tx x C C C D C y    ,                                    (12)                                                                                           

where   

  
1 2

3 3

1 2 1 21 1
1x x

t t t k t kk K k K
t n

C x x x x 
   

 

   
 

  , 

 ,  
1 2

1 2 1 2 1 2

2 2 2 ( )

( ) 2 ( ) ( )

0 0

0

x x

x x x x x x

K K

K K K K K K

D
  

    

 
  

  

, 
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and 
1 2

3 33 3

1 1 2 21 1

1

x x
x t k x t kk K k K

t n

x x   
   

 

 
    

 
. 

The penalized spline smoother ̂   is computed by  

  
1ˆ ( )T TC C D C y   .            (13)

                                     

Semiparametric Regression Model 

The semiparametric regression is a mixed model between parametric 

regression model and nonparametric regression model. The mixed model of penalized 

spline method allows the two explanatory variables  and a  response variable on the 

penalized spline  regression model which is written as 

 

0 1 1 2( )t t t ty x f x      , t = 1,…,n,           (14)

    

where ty is a response variable, ( 0 , 1 ) are  coefficient of parametric regression  

model, 2( )tf x is a smooth function of 2x ,  and  t  is an error term. 

 

The penalized spline regression model through the mixed model is   

1 2( , , )t t t ty x x    , t = 1,…,n,            (15)

                                  

where 

 
2

2

1
2 1

1 2 0 1 1 2 2

1 1

( , , ) | | , 1,...,
xKm

x j m

t t t j t k t k

j k

x x x x x t n      




 

       ,                   

                                                                                                                                (16)

          

with  
2 2

2 12 1/2 1/2

1 2 2 2 2 1
1

,..., 0, ( ) ,
x x

T mT

K x x x t k k K
t n

N x    
 

 
 

          
. 

A group of locations in a range of  interval [ , ]a b  is  
21 ....

xKa b      

, and  the interior knots are  2, 1,2,...,k xk K  . The low-rank thin-plate spline (m=2)  

is written by 

      
22 1

3

1 2 0 1 1 2 2

1 1

( , , ) | |
xK

j

t t t j k t k

j k

x x x x x      


 

      ,             17)
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where 
20 1 1 1( , , , ,..., )

x

T

K       is the vector of penalized spline  regression 

model, and 
21 ....

xK    are fixed knots.  We minimize  

    
2

1 2

1

( , , )
n

T

t t t

t

y x x D   


  ,                        (18)

     

2

2 2 2

3 3 3

3

0 0

0

x

x x x

K

K K K

D
 

 

 
  

  

,  and  
2

32 1

2 2 1

1

x

m

x t k k K

t n

x 

 

 

 
   

 
,  

where 2x  is the smoothing parameter computed by 

2

2 2x









   and D is known 

positive semi-definite penalty matrix. 

  

We can generalize penalized spline in the  matrix  form as                            (19) 

        
Kty X Z     ,     

        

where y is a 1n  vector, X is a  3n  matrix,   is a 3 1  vector,    is a 2 1xK   

vector,  

KtZ  is a  2xn K  matrix,   is a 1n  vector,  given by 

1

2
,

...

n

y

y
y

y

 
 
 
 
 
 

          

11 12

21 22

1 2

1

1
,

... ... ...

1 n n

x x

x x
X

x x

 
 
 
 
 
 

        

0

1

1



 



 
 


 
  

, 

2

1

xK







 
 

  
 
 

. 

2

2

2

33

21 1 21

33

22 1 22

33

2 1 2

...

...
,

... ... ...

...

x

x

x

K

K
Kt

n n K

x x

x x
Z

x x

 

 

 

  
 
 

  
 
 
 

 
 

and 

1

2

...

n








 
 
 
 
 
 

. 

The fitted values  of penalized spline smoothers 
1 2

ˆˆ( , , )x x  may also be 

expressed as 

 
1

1 2
ˆˆ( , , ) ( )T T

t tx x C C C D C y     ,           (20)                                                                              
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where  

  

2

3

1 2 2 1
1

1
x

t t t k k K
t n

C x x x 
 

 

  
 

 ,   
2

2 2 2

3 3 3

3

0 0

0

x

x x x

K

K K K

D
 

 

 
  

  

, 

and  
2

33

2 2 1

1

x
x t k k K

t n

x 
 

 

 
   

 
.  

The coefficient of parameter with semiparametric regression model is 

1ˆ ( )T TC C D C y   .                                                    (21)

                                                       

SIMULATION STUDY 

In this section, we display the process and the results of a simulation 

experiment that we conducted in order to compare the performance of parametric 

regression model, nonparametric regression model, and semiparametric regression 

model. To simulate data, we generated data in the class of  a response variable (y) and 

two explanatory variables (x). The response variable is obtained from 

                                      1 2( )t t t ty f x x    ,t=1,…,n                                           (22)                                                

where 
3 2 2

1 2 2 2

2

( ) ( cos( )) exp
1

t
t t t t

t

x
f x x x x

x

  
    

  
,  2 ( , )tx Uniform r r , and 

(0,1)t Normal . 

 

The uniform distribution of 2tx is generated with several values for r = 1, 3, 

5, and 7. The data is simulated  by R program with sample sizes   25, 50, 100, and 300 

, and repeated  for fitting model 500 times in each cases.  Figure 1 illustrates an 

example of simulated data with 50 sample sizes (n=50) in scatter plots that shown the 

relationship between response variable and two explanatory variables. 
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Figure 1 The scatter plot  between response variable and two explanatory variables      

                (n=50). 

 

We fit the data set for estimating  parameter of  parametric regression  which  

is  evaluated by the R program. However, the SemiPar Package in the R Program is 

used for data analysis with the nonparametric regression and semiparametric models. 

The performance of parameter estimation is compared by Mean Square Error (MSE) 

as follows: 

2

1

ˆ( )
n

t t

t

y y

MSE
n








, 

where ty  are the response variable, and ˆ
ty  are the fitted values. 
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 The first and second columns of Table 1 show various sample sizes and its 

minimum and maximum values from uniform distribution. The third to fifth columns 

present  the average MSE of parametric regression model (Reg), nonparametric 

regression model (Non), and semiparametric regression model (Sem).  

 

Table 1 The average MSE of parametric regression model (Reg), nonparametric  

              regression model (Non), and semiparametric regression model (Sem). 

 

Sample sizes Uniform Reg Non Sem 

 

n=25 

-1,1 0.9348 0.8050 0.8482 

-3,3 0.7481 0.5795 0.6067 

-5,5 0.9139 0.8859 0.9139 

-7,7 0.4402 0.2796 0.3512 

 

n=50 

-1,1 0.9434 0.8946 0.9114 

-3,3 0.9476 0.8844 0.9033 

-5,5 0.8854 0.8003 0.8609 

-7,7 0.6926 0.6718 0.6855 

 

n=100 

-1,1 0.9902 0.9531 0.9680 

-3,3 0.9662 0.9407 0.9512 

-5,5 0.9693 0.9375 0.9502 

-7,7 0.9703 0.9513 0.9606 

 

n=300 

-1,1 0.9986 0.9882 0.9924 

-3,3 0.9911 0.9810 0.9847 

-5,5 0.9887 0.9785 0.9832 

-7,7 0.9862 0.9759 0.9796 

 

 By observing the average MSE, the results appear that the nonparametric 

regression model provides the minimum values in all cases. The average MSE is 

decreasing  when the range of uniform distribution is increasing especially  the sample 

sizes n = 25, 50, and 100.  When the sample size is increasing, the average MSE is 

increasing depended on the asymptotic relative efficiency.  However, the average 

MSE of nonparametric regression model is shown the smallest values since the 

penalized spline method can be conducted using the truncated power function based 

on the number of knots which is controlled to  trade-off  the goodness of fit.    

THE APPLICATION IN REAL DATA 

In this section, we apply the model described in Section 2 to analyze with the 

real data. The gold price (US Dollars per Troy Ounce) is denoted the response variable 

and two explanatory variables are defined by the crude oil price (US Dollars per 

Barrel) and the number of month. These data consisted of 312 records of monthly 

volume from January 1988 to December 2013 that can be found at 

www.cmegroup.com and www.eia.gov.  The estimated parameters are obtain from the 
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data analysis of parametric regression model, nonparametric regression model, and 

Semiparametric regression model given in Table 2. 

 

Table 2 The parameter estimation of parametric regression (Reg) model,  

              nonparametric regression (Non) model, and semiparametric regression   

              (Sem)  model. 

 Reg Non Sem 

Parameter 

Estimation 
0

1

2

92.4411

ˆ 11.8667

0.8904

b

b

b



 
 

 
 
   

 

1 1 1

2 2 2

( ), 23.25, 35

( ), 352.6, 2

x x

x x

f x K

f x K





 

 

 

0

1

145
ˆ

11.89

b

b


 
  

 

 

2 2 2( ), 375.5, 2x xf x K    

MSE 45393.51 22462.54 45047.07 

 

From Table 2, it is apparent that MSE by the nonparametric regression model 

is the smallest values. Therefore, it should be noted that the  nonparametric regression 

model performs better than the parametric regression model and semiparametric 

regression model since  the nonparametric regression model contains the two 

smoothing function which can be interpolated more than the other models.  

 Figure 2 shown the fitted values from 3 models and the gold price is the 

bottom panel. It follows from the Figure 2 that the nonparametric regression model 

can be close the real values more than two models.  

 

Figure 2  The scatter plot of the gold price and fitted values of Reg  model, Non  

                    model, and Sem model. 
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CONCLUSIONS 

In this paper, we have  estimated  parametric regression model, nonparametric 

regression model, and semiparametric regression model in  classes of response 

variable and two  explanatory variables. The parametric regression model is fitted by 

the least square error method while the penalized spline method is proposed to 

estimate the nonparametric regression model and semiparametric regression model in 

terms of smoothing function. Through simulation study, the response variable is 

generated in terms of correlated function between two explanatory variables. The 

results show that  the nonparametric regression model performs better than other two 

models based method in terms  of minimizing MSE. For real data, we are also 

interested the financial data to compare the performance of three models by 

considering the MSE. The results is similar to the simulation data that the 

nonparametric regression is a superior over parametric regression model and 

semiparametric regression model. This is  expected because the nonparametric 

regression method consists  of smoothing function which controlled the trade-off 

between fidelity to the data and roughness of estimating function. On future work, we 

may focus  a local polynomial regression method,  regression splines  method,  

smoothing splines method based on nonparametric regression method to compare with 

3 models.  
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