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ABSTRACT 

  

In this paper, the zero-distorted Topp-Leone geometric distribution is introduced. It 

belongs to the k-distorted generalized discrete family of distributions. This family is useful to 

fit both zero-inflated and zero-deflated data. In addition, the proposed distribution has many 

special cases including the Topp-Leone geometric, the discrete zero-truncated Topp-Leone 

geometric, the zero-deflated Topp-Leone geometric and the zero-inflated Topp-Leone 

geometric distributions. We also derive the first four moments and index of dispersion for the 

zero-distorted Topp-Leone geometric distribution. For parameter estimation, the most well-

known method called the maximum likelihood estimation is utilized. In application study, we 

apply the proposed model to fit with three biological datasets. Furthermore, the fitted results 

of zero-distorted Topp-Leone geometric distribution are compared with the Topp-Leone 

geometric, the zero-distorted generalized geometric and the negative binomial distributions. 

In conclusion, the Anderson-Darling test statistic for discrete distributions shows that the 

zero-distorted Topp-Leone geometric distribution is the most appropriate model for these 

datasets. 

 

Keywords: zero-distorted distributions, geometric distribution, zero-inflated, maximum 

likelihood estimation, biological data, T-X family 

 

 
INTRODUCTION 

 
Count data frequently occur in many research problems. For example, the 

number of plant in biological study (Bliss and Fisher, 1953), the number of 

automobile claims in actuarial application (Gómez-Déniz et al., 2011), and the 

number of hospitalizations per family member in clinical trials (Klugman et al., 

2012) are recorded in the form of count data. Basically, these phenomena can be 

described by the Poisson distribution. However, the Poisson distribution restricts 

values of mean and variance to be equal. Frequently, observed data do not meet that 

restriction as count data exhibits either overdispersion, i.e., the variance is greater 

than the mean or zero-inflated, i.e., the presence of a high percentage of zero values 

(Gómez-Déniz et al., 2011). In addition, the observed overdispersion may be the result 

of excessive zeros in the distribution (Perumean-Chaney et al., 2013). Some 



  26                                                   NU. International Journal of Science 2018; 15(2) : 25-42                                                     
 

examples of overdispered and zero-inflated data are number of claims of 

automobile liability policies and hospitalizations per family member per year 

that the observed variance is greater than the observed mean, where there also exits 

high percentage of zero claim and zero hospitalization respectively. In literature, 

traditional discrete distributions have been developed to deal with these issues such 

as the zero-inflated Poisson distribution (Winkelmann, 2008), the generalized 

Poisson distribution (Chandra et al., 2013), the Poisson-weighted exponential 

distribution (Zamani et al., 2014), the zero-modified Poisson-Lindley distribution 

(Xavier et al., 2018), and etc.  

In contrast to zero-inflated data mentioned above, sometimes count data has 

a low percentage of zero values. The situation when count data have zero values less 

than the probability of the underlying model, called zero-deflated. Correspondingly, 

one needs to meditate a count data model by inflating or deflating. Recently, in 

2016, Sastry et al. (Sastry et al., 2016) considered the model that can analyze both 

zero-inflated and zero-deflated data. They proposed the framework based on the 

mixed-Poisson method with cumulative density function 
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where 0 1q   and 1    . Recently, Shirke et al. (Shirke et al., 2017) 

introduced the k-distorted generalized discrete family of distributions by 

generalizing ZDGG distribution (Sastry et al., 2016). This family includes the 

ZDGG distribution as a special case.  

 

The geometric distribution is a special case of the negative binomial 

distribution. It is commonly known to be a discrete analog of the exponential 

distribution (Johnson et al., 2005). Many properties of the geometric distribution are 

relevant to the properties of the exponential distribution (Akinsete et al., 2014). In 

addition to the work of Sastry et al. (Sastry et al., 2016), there are various attempts 

to modify the geometric distribution. Some examples are the Marshall and Olkin 
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geometric distribution (Gómez-Déniz, 2010), discrete generalized exponential 

distribution (Nekoukhou et al., 2012), the Kumaraswamy-geometric distribution 

(Akinsete et al., 2014) and the weighted geometric distribution (Bhati and Joshi, 

2018). Recently, the Topp-Leone geometric (TLG) distribution was proposed by 

Sudsuk and Bodhisuwan (Sudsuk and Bodhisuwan, 2016). It is a member of the T-X 

family of distributions (Aljarrah et al., 2014) and has two parameters. This 

distribution has flexibility over the geometric distribution in terms of density and 

hazard shape. Sudsuk and Bodhisuwan (Sudsuk and Bodhisuwan, 2016) showed that 

the TLG distribution could improve on the goodness-of-fit test result of the 

geometric distribution and provided better fit than the Poisson and geometric 

distributions in application study. 

 

In this work, we will apply the zero-distorted generalized discrete family of 

distribution (Sastry et al., 2016) with an extension of the geometric distribution 

called the TLG distribution. The rest of this paper are organized as follows. Firstly, 

we describe the k-distorted generalized discrete family of distributions together with 

its special case called the zero-distorted generalized discrete family of distributions. 

Secondly, the zero-distorted Topp-Leone geometric (ZDTLG) distribution is created 

based on analogue of the zero-distorted generalized discrete family of distributions. 

Therefore, its some properties are derived such as the first four moments and index 

of dispersion. Next section, the maximum likelihood estimation are considered for 

the proposed model. Finally, we compare the proposed distribution with the TLG, 

the ZDGG, and the negative binomial (NB) distributions by fitting with the 

biological datasets. 

 

PRELIMINARIES 

 

The essential components to create the ZDTLG distribution are discussed. 

There are the k-distorted generalized discrete family of distributions, the zero-

distorted generalized discrete family of distributions, and the TLG distribution. 

Indeed, the k-distorted generalized discrete family of distributions includes the zero-

distorted generalized discrete family of distributions as a special case (Shirke et al., 

2017). Moreover, the TLG distribution is an extension of the geometric distribution 

that will be capable of model both zero-inflated and zero-deflated data (Sastry et al., 

2016)  when it cooperated with the zero-distorted generalized discrete family of 

distributions (Shirke et al., 2017). 

 

The k-distorted generalized discrete family of distributions 

Based on the definition of Shirke et al. (Shirke et al., 2017), let ( )P x  be 

the pmf of a discrete random variable X  with parameter  . Then, the k-distorted 

generalized discrete family of distributions has pmf and cdf as respectively 
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where ( )kf f X k  , 1    . 

Consequently, if 0k  , we have the zero-distorted distribution with the pmf. 
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where 
0 ( 0)f f X  , 1    . Thus, the cdf is  
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According to Shirke et al. (Shirke et al., 2017), the zero-distorted 

generalized geometric distribution (Sastry et al., 2016) can be obtained by changing 

only (x)f  in Equations (5) and (6) to be pmf of the geometric distribution. 

 

The Topp-Leone geometric distribution 

Sudsuk and Bodhisuwan (Sudsuk and Bodhisuwan, 2016) allowed the cdf of 

the geometric distribution being a random variable from the Topp-Leone distribution 

(Topp and Leone, 1955). Then, the TLG distribution with pmf and cdf  are 
2( 1) 2( ) (1 ) (1 )  x xf x q q        (7) 

and 
1 1( ) (1 ) (1 )     x xF x q q      



NU. International Journal of Science 2018; 15(2) : 25-42                                                      29                                                                                                                                                                                                                                      
 

where 0  , 0 1q   and 0,1,2,...x   
 

Some mathematical properties of the zero-distorted generalized discrete 

family of distributions can be derived based on the same measurement of the 

discrete distribution with pmf ( )f x . So, we provide the 
thr  moment of the TLG 

distribution because it will be useful to obtain the 
thr  moment of the proposed 

distribution. Let X  be distributed as the TLG random variable. The 
thr  moment 

can be expressed as 
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THE ZERO-DISTORTED TOPP-LEONE GEOMETRIC DISTRIBUTION 

 

The ZDTLG distribution can be obtained by replacing Equation (7) to 

Equation (5) and (6). Then, the pmf and cdf of the ZDTLG distribution can be 

written respectively as  
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where 0  , 0 1q  , 1      and 0,1,2,...x   

Some pmf plots of the ZDTLG distribution are shown in Figure 1 with 

various values of its parameters. These are categorized into three shapes which are 

decreasing (1), unimodal (2-5), mixed-shape (6-8). It is obvious that the proposed 

distribution includes both greater and lesser zero tendency in the single model. 

 

According to Shirke et al. (Shirke et al., 2017), the ZDTLG distribution has 

several special cases including the TLG, the discrete zero-truncated Topp-Leone 

geometric, the zero-deflated Topp-Leone geometric and the zero-inflated Topp-

Leone geometric distributions as follows; 

1) when 0  , the model reduces to the TLG distribution, 

2) when 1   , it corresponds to the discrete zero truncated Topp-Leone 

geometric distribution, 

3) when 1 b   , the distribution is the zero-deflated Topp-Leone 

geometric distribution, and when b  , it is the zero-inflated Topp-Leone 

geometric distribution where b  is a constant that shows in Equation (14) and (15). 

 

Furthermore, we use stochastic order to show effect of adjustment based on 

adding distortion parameter. The relation between the ZDTLG distribution and the 

TLG distribution are illustrated as follows. Let ( )XF t  and ( )YF t be random variable 

of the TLG distribution and the ZDTLG distribution respectively 
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Therefore, if 0  , ( )YF t  of the proposed distribution is larger than 

( )XF t  of the TLG distribution and Y is stochastically smaller than X . On the other 

hand, when 0  , ( )YF t  of the proposed distribution is smaller than ( )XF t  of 

TLG distribution and Y  is stochastically larger than X . 
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Figure 1 Plots of the ZDTLG pmf for some values of ,q   and   
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Moments 

Shirke et al. (Shirke et al., 2017) have shown a relation between the moment 

generating function of the zero-distorted generalized discrete family of distributions 

and the associated discrete distribution. Then, they utilized it to obtain the 
thr  

moment of the zero-distorted generalized discrete family of distributions. In this 

paper, we firstly simplify the 
thr  moment of the zero-distorted generalized discrete 

family of distributions in order to obtain the 
thr  moment of the proposed 

distribution. The 
thr  moment of the zero-distorted generalized discrete family of 

distributions is 
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For a random variables X  with pmf ( )f x , its 
thr  moment ( ( ))rE X  

can be rewritten as  
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By substituting Equation (11) into Equation (10), the 
thr  moment of the 

zero distorted generalized discrete family of distributions can be defined as  
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When random variable X  has the ZDTLG distribution, its 
thr  moment can be 

obtained from the 
thr  moment of the TLG distribution and Equation (12). 
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Index of dispersion 

The index of dispersion (ID) is the ratio of the variance to the mean. It is 

used to determine whether the distribution is overdispersed ( 1ID  ) or 

underdispersed ( 1ID ). Based on 
1  and 

2  in Equation (13), we can derive 

mean and variance of the ZDTLG distribution as 
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On the other hand, the proposed distribution is underdispersed which 
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 
        (15) 

 

PARAMETER ESTIMATION 

 

Parameter estimation plays a central role in statistical inference. It is useful 

to both describe behavior of population and test hypothesis for making the decision. 

The maximum likelihood estimation (MLE) is one of the widely-used parameter 

estimation methods. In this paper, MLE is considered to estimate the unknown 

parameters of the ZDTLG distribution. 

Let 
1,..., nX X  be observations of independent random variable from 

ZDTLG distribution. The maximum likelihood estimator of the vector parameter 

( , , )q    can be obtained as follows. The log-likelihood function for the vector 

parameter   is 

     
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where m is the number of zero in the sample. The corresponding vector scores are 

obtained as 
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and 
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 (18) 

 

By setting Equation (16)-(18) to zero, these differential equations cannot be 

solved algebraically. But, we can use a numerical method in optim function in R 

language (R Core Team, 2017) to maximize the log-likelihood function and then the 

estimator ˆ ˆˆˆ( , , )Tq    will be obtained. 

 

APPLICATION 

 

As mentioned earlier, the ZDTLG distribution has competence in modeling 

both zero-inflated and zero-deflated data. In this section, we use three biological 

datasets to show flexibility and capability of the proposed distribution. These 

datasets from Bliss and Fisher (Bliss and Fisher, 1953) are as follows; the first 

dataset is the number of Ameria maritina counts per quadrat in a salt marsh, the 

second dataset is the number of Chenopodium counts per quadrat in a weed on 

arable land, and the last dataset is the number of Salicornia stricta counts per quadrat 

in a salt marsh. Moreover, Table 1 displays mean, variance and ID for these three 

datasets. According to ID, we can conclude that these datasets behave over-

dispersed. 

 
Table 1 Mean, variance and ID of three datasets 

  Datasets 

  America maritima Chenopodium album Salicornia stricta 

Mean 1.580 4.032 6.653 

Variance 5.418 15.754 31.054 

ID 3.430 3.907 3.165 
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In this article, the proposed distribution called the ZDTLG distribution is 

compared with the three existing distributions: the TLG, ZDGG, and NB 

distributions. For parameter estimation, three distributions including the ZDTLG, 

TLG, ZDGG distributions are obtained by the optim function in R language (R 

Core Team, 2017). The parameters of the NB distribution are estimated by the 

fitdist function of fitdistrplus package (Delignette-Muller and Dutang, 

2015). In addition, for goodness-of-fit test, the Anderson-Darling (AD) test statistic 

for discrete distributions is applied to these distributions by using the dgof package 

(Arnold and John, 2011). Tables 2-4 provide observed and expected frequencies of 

three real datasets and show the Akaike information criterion (AIC), the Bayesian 

information criterion (BIC), AD test, and p-values of AD test, corresponded to the G 

ZDGG, ZDTLG, and NB distributions.  

 

In addition, plots of observed and expected values for each of the datasets 

among these distributions are presented in Figures 2-4. For model selection in this 

study, the proposed model have the smallest AIC and BIC in dataset 1 and dataset 2. 

In dataset 3, the AIC (556.021) and BIC (561.191) of the NB model are a bit less 

than the AIC (556.502) and BIC (564.257) of the ZDTLG model. In goodness of fit 

test, the proposed distribution has the highest p-values. In summary, the proposed 

distribution provides better fit comparing to the TLG and the ZDGG distributions 

and can be candidate for the NB distribution. 

 

 

Figure 2  Plots of observed and expected values of Ameria maritima based on the TLG, 

ZDGG, ZDTLG and NB distributions  
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Table 2 Numbers of Ameria maritima counts per quadrat 

Numbers 

of Plant 
Observed 

Expected 

TLG ZDGG ZDTLG NB 

0 57 55.29 57.00 57.00 54.11 

1 6 14.76 11.70 6.40 16.19 

2 12 8.81 8.52 9.21 8.98 

3 5 5.85 6.20 8.54 5.75 

4 5 4.07 4.51 6.52 3.93 

5 5 2.92 3.28 4.51 2.78 

6 7 2.12 2.39 2.95 2.02 

7 1 1.56 1.74 1.87 1.49 

8 0 1.16 1.27 1.16 1.11 

9 1 0.86 0.92 0.72 0.84 

10 1 0.64 0.67 0.44 0.64 

Estimates ˆ 0.869q   ˆ 0.728q   ˆ 0.778q   ˆ 0.369r   

  

ˆ 0.420   
ˆ 1.657   ˆ 3.843   ˆ 1.580   

    

28 26ˆ .7   

 AIC 330.424 325.645 321.227 333.199 

BIC 335.634 330.856 329.043 338.409 

AD statistics 0.5978 0.333 0.121 0.748 

p-value 0.389 0.604 0.911 0.31 

 

Figure 3  Plots of observed and expected values of Chenopodium album based on the TLG, 

ZDGG, ZDTLG and NB distributions  
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Table 3 Numbers of Chenopodium album counts per quadra 

Numbers 

of Plant 
Observed 

Expected 

TLG ZDGG ZDTLG NB 

0 19 12.08 18.99 18.99 9.16 

1 5 15.26 15.08 2.25 13.51 

2 6 13.86 12.09 8.04 14.25 

3 9 11.63 9.69 12.69 13.03 

4 5 9.41 7.77 13.53 11.01 

5 20 7.47 6.23 11.69 8.83 

6 14 5.85 4.99 8.95 6.84 

7 8 4.54 4.00 6.37 5.16 

8 4 3.50 3.21 4.35 3.81 

9 3 2.69 2.57 2.88 2.77 

10 2 2.07 2.06 1.88 1.99 

Estimates ˆ 0.872q   ˆ 0.802q   ˆ 0.796q   ˆ 2.327r   

  

ˆ 1.445   
ˆ 0.009   ˆ 6.776   ˆ 4.032   

    

201 85ˆ .03   

 AIC 476.237 480.715 444.44 470.185 

BIC 481.345 485.823 452.101 475.293 

AD statistics 0.175 0.208 0.077 0.222 

p-value 0.741 0.621 0.964 0.709 

 

Figure 4  Plots of observed and expected values of Salicornia stricta based on the TLG, 

ZDGG, ZDTLG and NB distributions  
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Table 4 Numbers of Salicornia stricta counts per quadrat 

Numbers of 

Plant 
Observed 

Expected 

TLG ZDGG ZDTLG NB 

0 4 3.68 4.00 3.97 2.87 

1 3 7.94 13.55 4.09 6.01 

2 8 9.61 11.6 7.69 8.34 

3 13 9.91 9.93 9.92 9.63 

4 11 9.45 8.49 10.66 9.98 

5 9 8.63 7.27 10.32 9.65 

6 8 7.66 6.22 9.35 8.88 

7 10 6.66 5.32 8.12 7.87 

8 3 5.72 4.56 6.83 6.78 

9 3 4.86 3.90 5.62 5.71 

10 8 4.09 3.34 4.56 4.72 

11 3 3.43 2.86 3.65 3.84 

12 4 2.86 2.44 2.90 3.08 

13 4 2.38 2.09 2.28 2.44 

14 0 1.97 1.79 1.79 1.92 

15 3 1.63 1.53 1.40 1.50 

16 0 1.34 1.31 1.09 1.16 

17 0 1.11 1.12 0.85 0.89 

18 1 0.91 0.96 0.66 0.68 

19 0 0.75 0.82 0.51 0.52 

20 3 0.62 0.70 0.40 0.39 

Estimates ˆ 0.905q   ˆ 0.856q   ˆ 0.879q   ˆ 3.05r   

  

ˆ 1.922   0 732ˆ .    ˆ 3.287   ˆ 6.653   

    

4.2 85ˆ 955   

 AIC 560.206 575.278 556.502 556.021 

BIC 565.376 580.448 564.257 561.191 

AD statistics 0.651 3.218 0.211 0.225 

p-value 0.519 0.017 0.953 0.946 

 

CONCLUSIONS 
 

We create the ZDTLG geometric distribution based on the k-distorted 

generalized discrete family of distributions. The ZDTLG distribution offers flexible 

benefits in modeling both zero-inflated and zero-deflated data. The ZDTLG 

geometric distribution includes the Topp-Leone geometric, the discrete zero-

truncated Topp-Leone geometric, the zero-deflated Topp-Leone geometric and the 



NU. International Journal of Science 2018; 15(2) : 25-42                                                      41                                                                                                                                                                                                                                      
 
zero-inflated Topp-Leone geometric distributions as spatial cases. Its first four 

moments can be derived based on the TLG distribution. To estimate the ZDTLG 

parameters, the maximum likelihood estimation is applied. Moreover, real biological 

datasets are fitted with the proposed distribution, the TLG distribution, the ZDGG 

distribution, and the NB distribution. As the ZDTLG distribution has the smallest 

AD statistics and the biggest p-values, we can conclude that the ZDTLG distribution 

is the best model to describe these real datasets.   
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