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ABSTRACT  

           The major problem of wind energy sources always occurs in an isolated small 

power system is a serious frequency deviation problem which is a result of the intermittent 

nature of wind power. An alternative way to relive this frequency deviation is applying a 

plug-in hybrid electric vehicle (PHEV) to control power in the system. However, improper 

setting PHEV power deviation controller cannot manage the real power unbalance deviation 

in the isolated small power system and cause worse frequency control to follow. In order to 

avoid unsuitable setting PHEV power charging control a machine learning method, an 

artificial neural network (ANN) was used to find suitable values set of PHEV controller 

parameters. In selection, the PHEV controller parameters using confidence interval (CI) from 

the suitable values set for optimizing the PHEV controller parameters. The results show the 

superior frequency control effects of the proposed PI controllers. 

 

Keywords: Artificial neural network, Confidence interval, Parameter Optimization, Isolated 

small power system, Plug-in hybrid electric vehicle 

 
INTRODUCTION  

  

The wind energy source was gained popularity recently especially for 

isolated small power system like a small island because of low set up cost and 

efficiency in power generation (Nikolaidis et al. 2016; Miyauchi et al. 2014; Vogel et 

al. 2018). But the main problem for wind energy source due to intermittent nature of 

wind itself result in unsteady power generation and frequency deviation (Yao et 

al. 2011). The problem can be relieved by a plug-in hybrid electric vehicle (PHEV) 

to controlling power load in the system (Galus et al. 2011). However, PHEV power 

deviation control that was not proper charging unable to manage the real unbalance 

power deviation in the system and may be the reason of large frequency deviation 

instead (Tan et al. 2014). The PHEV power deviation control which considers the 

minimizations of an integral absolute error (IAE) value of the real power unbalance 

deviation and an IAE value of the frequency deviation is greatly desired. The PHEV 

proportional-integral (PI) controllers can satisfactorily restrict the frequency 
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deviation in the isolated small power system (Senjyu et al. 2008). But efficiency 

method still needs to relieve the frequency deviation.  

The Machine learning was a part of computational learning theory in 

artificial intelligence field to recognize the hidden pattern in the data and can use to 

optimization parameter in the process (Sra et al. 2012; Michalski et al. 2013). The 

main purpose of the optimization approach is to find an objective function that is a 

minimum or maximum (Carson et al. 1997; Liu et al. 2018). Many research applied 

various machine learning techniques for optimization such as simulated annealing 

(SA), genetic algorithm (GA), and particle swarm optimization (PSO) was already 

used for optimizing the controller parameters (Grefenstette. 1986; Kwok et al. 1994; 

Su et al. 2011). When considering the performance, GA is faster than SA because of 

the GA algorithm work in a parallel searching method which imitates natural genetic 

operation (Hasan et al. 2000). However, GA will get lower performance if the 

optimized function is epistatic where the parameters that will optimize was 

correlated (Fogel. 2006; Das et al. 2006). The GA still have the premature 

convergence demerit. 

An artificial neural network (ANN) can apply for the PHEV controller 

design for damping the frequency deviation in the isolated small power system. 

Previously, the research to proposed new optimal controller parameters predicting 

the PHEV for frequency control in an isolated small power system using a neural 

network model (Jandum et al. 2016; Jandum et al. 2016). Moreover, the PHEV 

control based on the ANN can apply for controlling voltage and frequency in 

autonomous microgrids (Tamee et al. 2015) which the ANN was appropriately 

applied. However, PHEV controller parameters were best value form ANN model 

that cannot define in the real world. Thus we have to find the range of optimal 

parameters instead. 

This paper focuses on an application of ANN and CI for the PHEV 

controller parameters optimization (ANN-CI-PHEV) considering proper PHEV 

charging power deviation control based on the minimizations of an IAE value of the 

real power unbalance deviation and an IAE value of the frequency deviation for 

frequency control in an isolated small power system. Simulation studies show the 

effectiveness and superiority of the proposed PI controllers of PHEV in comparison 

with the conventional PI controllers of PHEV in (Senjyu et al. 2008).  
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ISOLATED SMALL POWER SYSTEM 

                        

Fig. 1. The isolated small power system connected to a wind farm. 

 

In Fig. 1, it is an isolated small power system consisting of a 20 MW diesel 

generator, 6 MW wind farm, 17 MW load, and 5 MW PHEV.  

 

 

Fig.  1. The wind power output deviation. 

In Fig. 2, the wind power output deviation 6 MW time under 2,400 second 
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Fig.  2. The random load deviation. 

 

In Fig. 3, the random load deviation of 17 MW time under 2,400 seconds. 

 

 
Fig.  3. The linearized model for the isolated small power system. 
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The linearized model of the isolated small power system is illustrated in Fig. 

4. The proposed PI controllers of PHEV are  

                              1 2
1 1 2

I I
PHEV P P

K K
K ( s ) K ,K

s s
                   (1) 

                                                 3 4
2 3 4

I I
PHEV P P

K K
K ( s ) K ,K

s s
                      (2) 

where the 
1PHEVK  and 

2PHEVK  are the proposed PI controllers of PHEV1 and 

PHEV2. The 
1PK  and 

1IK  are the PI controller parameters of the frequency 

deviation of PHEV1. The 
2PK  and 

2IK  are the PI controller parameters of the 

charging rate deviation of PHEV1. The 
3PK  and 

3IK  are the PI controller 

parameters of the frequency deviation of PHEV2. The 
4PK  and 

4IK  are the PI 

controller parameters of the charging rate deviation of PHEV2. Theis the 
 f  

frequency deviation. The  eP  is the real power unbalance deviation. The  PHEVP is 

the PHEV charging power deviation. The system parameter details are given in (6). 

 

PROPOSED METHODOLOGY  

  

In this section, we are explaining the operation in each step of using the 

ANN model predict the PI parameters and finding of range by confidence interval 

(CI) estimation as follows. 

 

STEP 1: The ANN model predict the PI parameter  

In principle, the ANN model has the power of a universal approximation 

and a mathematical model to simulation imitate the function of the human brain of 

biological nervous systems. The ANN model solves for a specific problem, such as a 

problem of the pattern recognition, data classification, prediction values, etc. In this 

phase, the ANN model is to be a predictor the PI controller parameter values of 

PHEV. The ANN model is varieties of kinds of network structure. The multilayer 

feedforward backpropagation neural network is the most popular neural networks. 

The neural networks are trained with a Levenberg-Marquardt (LM) algorithm and 

the architecture consists of the input layer, hidden layer, and output layer (Svozil et 

al.1997; Hagan et al. 1994) as shown in Fig. 5.  
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Fig.  5. The architecture of the multilayered feed-forward ANN model. 

 

The Fig.5 shows the architecture of a multilayered feed-forward ANN 

model consists of an input layer, a hidden layer, and an output layer. The weight (w) 

and bias (b) are selected randomly in the ANN model. The w is the weight value of 

the connection between all the nodes of the neural network. The each of the input 

data are multiply by the weight matrix and set during the learning process. The b is 

the bias values associated with each node in the intermediate and output layers of a 

neural network. Get data for training, validation and test data set extract from the 

experiment results.  

                                                     ,

1

I

j i j i j

i

n w x b


                              (3) 
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The n  can be calculated by Equation (3) pass into an activation function 

determines the properties of the neuron network. The log-sigmoid function for the 

activation function in the ANN model. The most commonly used hidden neuron 

activation function is the log-sigmoid transfer function. The results of the log-

sigmoid transfer function are included in a range from [0 - 1].  

                                           ,( ) ( )k i n na f n f w x b                     (4)                                      

 

The ( )f n  is the type of activation function of the log-sigmoid transfer 

function. The ka  is the actual value predicted by the ANN model. The output layer 

data of the 1a is an IAE value of the frequency deviation. The 2a  is an IAE value of 

the real power unbalance deviation. The ANN model is used to learn the linearized 

model of the isolated small power system and predict the minimum values of the 

IAE of frequency deviation and the IAE of real power unbalance deviation.  

The ANN model consists of the input layer, hidden layer, and output layer. 

The dataset is 500 samples in the ANN model. The dataset was divided into 70%, 

15% and 15% for neural network training. The 350 samples for the training set, the 

75 samples for the validation set and the 75 samples for the testing set.  

  

 
Fig.  6 The values of the mean square error and the correlation coefficient are 

predicted by the ANN model. 

 

 

The fig. 6 shows the result of the correlation coefficient the mean square 

error of the number of node hidden layer.  The number of node hidden layer are set 

as 2 to 12 and select the best of minimum value of mean square error (MSE) at 

number of node hidden layer at 8 for ANN model prediction the minimizations of 

an IAE value of the f  and an IAE value of the eP  for frequency control in an 

isolated small power system. 
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Fig.  7. The values of mean square error of the ANN model. 

 

Fig. 7 show the MSE of the ANN model. As observed in Fig. 7, the blue 

graph of the best train set performance is 0.04740, the green graph of the best 

validation performance is 0.06790 at epoch 15 and the red graph of best test set 

performance is 0.08533.  

 
Fig.  8. The values of correlation coefficient (R) of regression plot of the ANN 

model. 
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Fig 8 exhibits the value of correlation coefficient (R) of the following 

regression plots display the network outputs with respect to targets for training, 

validation, and test sets. The values of R is 0.99814 and the slope is 1. This implies 

that the prediction values of the ANN model is in the same direction and achieved 

during the whole dataset proved that the prediction close to measured value. 

The best validation performance of the ANN model for prediction of the PI 

controller parameters of PHEV. The random of 5,000 samples for the ANN model 

was applied to predict the IAE value of 
eP  and the IAE value of f . The part of 

the group 450 samples of the random parameter can provide the result the minimum 

value of the IAE value  
eP  and the IAE value of f . We are select the 450 sample 

for the CI estimation of the new lower and upper bounds of the PHEV controller 

parameters as shown in table 1. 

 

Table  1. The group of 450 samples of the parameter can provide the result the 

minimum value of the IAE value  
eP  and the IAE value of f  

  

The table 1. show the 450 sample data can provide the result the minimum 

value of the IAE value f  around 7.8239 to 7.9212 and  the IAE value of
eP  

around 1.1157 to 1.7832 

 

 

 

No. KP1 KI1 KP2 KI2 KP3 KI3 KP4 KI4 f  
eP  

1 0.7027 0.0062 2.1019 0.0928 0.0219 0.0144 1.1342 0.8490 7.8238 1.7831 

2 2.3610 0.0825 0.8114 0.0381 1.5258 0.0358 0.4165 0.0480 7.8240 1.1329 

3 2.7362 0.0757 0.0104 0.0072 1.6090 0.0788 0.4322 0.0852 7.8240 1.1328 

4 2.8639 0.0813 0.3400 0.0518 1.4356 0.0395 0.3524 0.0743 7.8241 1.1328 
5 2.6107 0.1015 0.8569 0.0248 1.5162 0.0675 0.8960 0.0855 7.8242 1.1328 

6 2.7296 0.1178 0.7391 0.0626 1.4377 0.0217 0.8169 0.0692 7.8243 1.1328 

7 2.7083 0.1118 0.4883 0.0420 1.5532 0.0364 0.2639 0.0123 7.8244 1.1328 

8 2.6746 0.0734 0.3914 0.0610 1.5565 0.0810 0.5883 0.0588 7.8245 1.1328 
9 2.7331 0.1112 0.8594 0.0061 1.4262 0.0338 0.7217 0.0091 7.8246 1.1328 

10 2.8006 0.0322 0.8121 0.0178 1.1267 0.0056 0.5633 0.0838 7.8246 1.1333 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

441 2.8852 0.0497 0.8649 0.0610 1.5717 0.0629 0.2018 0.0839 7.9165 1.1165 

442 2.6307 0.0329 0.7091 0.0470 1.4730 0.0018 0.4079 0.0743 7.9168 1.1165 

443 2.9685 0.0784 0.5667 0.0477 1.5342 0.0269 0.7939 0.0440 7.9178 1.1162 
444 2.9206 0.0521 0.7125 0.0012 1.4652 0.0125 0.2027 0.0266 7.9189 1.1160 

445 2.7506 0.0472 0.7365 0.0632 1.4940 0.0254 0.8364 0.0489 7.9194 1.1160 

446 2.9552 0.0587 0.0302 0.0373 1.5778 0.0148 0.4863 0.0674 7.9195 1.1159 

447 2.7881 0.0533 0.8258 0.0192 1.5104 0.0222 0.3918 0.0535 7.9196 1.1159 
448 2.9928 0.0580 0.6346 0.0827 1.5856 0.0649 0.5035 0.0703 7.9197 1.1159 

449 2.4991 0.0408 0.3625 0.0783 1.5731 0.0010 0.8747 0.0138 7.9203 1.1158 
450 2.8943 0.0533 0.2935 0.0614 1.5612 0.0069 0.1110 0.0562 7.9212 1.1156 
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STEP 2: Finding of range by confidence interval (CI) estimation 

The confidence interval (CI) provide more information than point estimates. 

The CI for means are intervals constructed using a procedure that will contain the 

population means a specified proportion of the time, typically either 99% of the 

time. The beginning of process CI is select an appropriate parameter form ANN 

model for population and calculate your sample mean ( )x  and sample standard 

deviation ( ) . The selection of the level of the confidence interval is 99% in the 

experiment. The (1 -  ) is called the probability content or level of confidence. We 

are calculate the margin of error for the lower bound end of the range, subtract from 

the sample mean shown in equation 7. The upper bound end of the range, add from 

the sample mean as shown in equation 8. 

 

                                          /2
( )

Lower
n




                               (7) 

                                                     /2
( )

Upper
n




                                (8) 

where the   is the value from the critical value table. The 
Lower  called as the lower 

bound and the 
Upper  called as the upper bound are generated by CI.  

 

 
Fig.  8. The boxplot of the group of 450 samples of parameter 

 

The Fig. 8 the simplest possible box plot displays the full range of variation 

from min to max of the KP1, KI1, KP2, KI2, KP3, KI3, KP4 and KI4. We use the 

CI finding of range lower and upper bounds are calculated by 99% of CI of the 

difference as shown in table 2 

 

 

http://www.statisticshowto.com/sample-mean/
http://www.statisticshowto.com/sample-mean/
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Table  2. The CI estimate range of parameter of PHEV 

Param

eter of 

PHEV 

 

Test Value = 0 

t df Sig.  

Mean 

Differe

nce 

99% CI of the 

Difference 

Lower Upper 

KP1 179 449 0.00 2.6341 2.5960 2.6722 

KI1 55.2 449 0.00 0.0622 0.0593 0.0651 

KP2 33.6 449 0.00 0.5407 0.4991 0.5824 

KI2 34.17 449 0.00 0.0452 0.0418 0.0487 

KP3 155.1 449 0.00 1.4900 1.4651 1.5149 

KI3 31.04 449 0.00 0.0420 0.0385 0.0455 

KP4 37.54 449 0.00 0.5032 0.4685 0.5379 

KI4 11.55 449 0.00 0.0610 0.0473 0.0747 

 

The table 2. show the CI estimation of the new lower and upper bounds of 

the PHEV controller parameters. 

 

SIMULATION RESULTS   

  

After the neural network model used to predict the PHEV controller 

parameters and then using CI estimation of the new lower and upper bounds of all 

parameters. Next, we randomize PHEV controller parameters values three samples 

and replaced in the equations (1) to (2).  

The proposed PI controllers of ANN-CI-PHEV-1 (parameters values 

samples one) can be obtained as follows: 

 

1

0.0062 0.0928
0.70( ) ,2.102 17 9ANN PHEVK s

s s
     

2

0.0144 0.8490
0.0219 1.13 2( ) , 4ANN PHEVK s

s s
     

 

As a result, the proposed PI controllers of ANN-CI-PHEV-2 (parameters 

values samples two) are 

1

0.0
( ) 1.0027 ,2.9879

062 1.9067
PSO PHEVK s

s s
     

2

0.0142
0.02

1.1256
( ) ,2.829829PSO PHEVK s

s s
     

 

As a result, the proposed PI controllers of ANN-CI-PHEV-2 (parameters 

values samples three) are 

1

0.0399 0.0124
2.0476 0.0647( ) ,ANN CI PSO PHEVK s

s s
     

 

2

0.0454 0.0196
1.1021 0.0762( ) ,ANN CI PSO PHEVK s

s s
     
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Table  3. The IAE value of frequency deviation and the real power unbalance 

deviation. 

 

  Methodology 

The 

frequency 

deviation  

( f )  

The real power 

unbalance 

deviation 
e( P )  

Conventional- PHEV 12.2220 3.0313 

ANN-CI-PHEV-1 7.4341 1.8688 

ANN-CI-PHEV-2 3.1037 1.2874 

ANN-CI-PHEV-3 6.4868 1.6944 

 

Accordingly, the table 3 shows both the IAE value of frequency deviation 

( f ) and the real power unbalance deviation 
e( P ) . The values of IAE  f in the 

case of the Conventional-PHEV is 12.2220, ANN-CI-PHEV-1 is 7.1341, ANN-CI-

PHEV-2 is 3.1037. Also, the IAE value  f in the case of the ANN-CI-PHEV-3 is 

6.4868. The values of IAE of 
eP in the case of the Conventional-PHEV is 3.0313, 

ANN-CI-PHEV-1  is 1.8688 and ANN-CI-PHEV-2 is 1.2874. Also, the IAE value 

of 
eP in the case of the ANN-CI-PHEV-3 is 1.6944. The IAE value of frequency 

deviation ( f ) and the real power unbalance deviation 
e( P ) of the proposed 

ANN-CI-PHEV is much lower than the Conventional-PHEV. 

Fig 9-10 show the simulation of the ANN-CI-PHEV are compared with 

conventional PI controllers of PHEV (Conventional- PHEV) 

 

 
Fig.  9. Frequency deviation ( f )  
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Fig 9 shows the frequency deviation ( f ) in the isolated small power 

system. The green graph dotted line is the Conventional-PHEV. The black graph is 

the ANN-CI-PHEV-1. The red graph dotted line is the ANN-CI-PHEV-3. The blue 

graph line of ANN-CI-PHEV-2. The proposed ANN-CI-PHEV can suppress greatly 

the frequency deviation when compared with the Conventional-PHEV. 

 

 
 

Fig.  10. The real power unbalance deviation
e( P )  

 

Figure 10 shows the frequency deviation in the isolated small power system. 

The green graph dotted line is the Conventional-PHEV. The black graph is the 

ANN-CI-PHEV-1. The red graph dotted line is the ANN-CI-PHEV-3. The blue 

graph line of ANN-CI-PHEV-2. The proposed ANN-CI-PHEV can suppress greatly 

the real power unbalance deviation when compared with the Conventional-PHEV. 
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CONCLUSIONS 
  

The ANN-CI-PHEV for the PHEV controller parameters optimization 

considering proper PHEV charging power deviation control based on the 

minimizations of an IAE value of the real power unbalance deviation and an IAE 

value of the frequency deviation for frequency control in an isolated small power 

system. For the PHEV controller structure, it is a PI. Simulation studies show the 

effectiveness and superiority of the proposed PI controllers of PHEV in comparison 

with the conventional PI controllers of PHEV, the ANN-CI-PHEV designed by 

neural network model and find the range of PHEV controller parameters using the 
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confidence interval (CI) estimation from prediction. This illustrates that the new 

proposed method is able to effectively find both the minimum IAE value of f and 

the minimum IAE value of the 
eP . 
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