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ABSTRACT  

  
Melioidosis is a bacterial disease and is mostly found in the tropical country 

especially Southeast Asia, Northern Australia and northeast Thailand. With an increase in 

number of infected patients and a belief that there is a large number of infections that is 

underreported, a better understanding and strategy approach in order to reduce the 

transmission is therefore required. In this study a compartmental model of melioidosis 

transmission involving hygiene care and treatment is presented. The model is analyzed 

theoretically and numerically. The basic reproduction number and its sensitivity indices are 

calculated. Further, by using Pontryagin’s Minimum Principle (PMP), the optimal control 

problem is constructed with two controls. Our results demonstrate that a combination of both 

hygiene care and treatment controls could largely help reducing the number of exposed and 

infected individuals and the concentration of bacteria. Therefore, both mentioned controls 

should be encouraged to reduce overall melioidosis transmission.  
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INTRODUCTION  

  

Melioidosis is a life-threatening infectious disease of public health importance in 

tropics and subtropics particularly in Southeast Asia and Northern Australia. It is 

caused by the environmental gram-negative bacillus Burkholderia pseudomallei, 

which presents in soil and water (Wiersinga et al., 2012; Limmathurotsakul et al., 

2013a). The most common route of melioidosis infection is via direct contact with 

contaminated soil and water, especially though open wounds on the skin. Humans 

and animals can also acquire the infection by inhaling dust particles or water 

droplets or ingesting water that is contaminated. The symptoms can be ranged from 

acute, high fever, chest pain during breathing to chronic cough with pulmonary 

infiltration similar to tuberculosis. It is recommended that people with risk factors 

such as rice farmers, people who have diabetes or immunosuppressive therapy stay 

indoors during periods of heavy wind and rain, or wear boots and gloves when in 

direct contact with soil and water and do not consume untreated water 

(Limmathurotsakul et al., 2013b).  

 The overall case fatality rate for melioidosis ranges from 14% to 40% and 

could be as high as 80% if effective antimicrobial drugs are not provided 

(Hoffmaster et al., 2015). It is estimated to account for 165,000 people who get 
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melioidosis infected, from which 89,000 people die per year worldwide 

(Limmathurotsakul et al., 2016). With this number, it is believed that melioidosis 

infection is severely underreported in 45 countries, whereas a further 34 countries 

that have never reported. Most cases found during rainy season or humid months. 

There is a number of studies confirming the correlation of rainfall and severe 

weather events and an increase in melioidosis incidence (Liu et al., 2015; 

Limmathurotsakul et al., 2013b; Mu et al., 2014; Limmathurotsakul et al., 2016; 

Kaestli et al., 2016). In northeast Thailand, the disease is known to be a major cause 

of community-acquired septicaemia and is classified as the third most common 

cause of death from infectious diseases (Limmathurotsakul et al., 2010). The 

treatment of melioidosis involves antibiotics, however, since the Burkholderia 

pseudomallei are highly drug resistant, the infected ones require prolonged treatment 

regimens (Dance, 2014). 

 With the fact above, together with unawareness of people about melioidosis, 

a number of researches have been performed to better understanding of this disease. 

For example, the incidence of the melioidosis in Australia (Cheng et al., 2006; 

Kaestli et al., 2007), Thailand (Cheng et al., 2008; Limmathurotsakul et al., 2010, 

Limmathurotsakul et al., 2013b; Hinjoy et al., 2018), in Taiwan (Ko et al., 2007; Mu 

et al., 2014) and in Laos (Rattanavong et al., 2011; Dance et al., 2018). In addition, 

several mathematical models have been developed to explain the dynamics of the 

bacterial caused disease, for example cholera (e.g. Cui et al., 2014; Sun et al., 2017) 

leptospirosis (e.g. Okosun et al., 2016) and typhoid (e.g. Tilahun et al., 2017). To 

authors’ knowledge, there is only one mathematical model of melioidosis 

transmission has been studied and it is the work by Mahikul et al., 2019. They 

proposed compartmental model to predict the burden of melioidosis in Thailand 

containing 8 variables which are susceptible, diabetic susceptible, exposed, 

symptomatic, asymptomatic, severe, treatment, and recovery. They solved and 

analyzed their model numerically by using R software and fit their model with raw 

data by using Markov Chain Monte Carlo (MCMC) method, this was to obtain the 

structure of melioidosis cases in Thailand and gained parameter values used in the 

model from this fitting. Their results emphasized on demographic which will lead to 

estimate the future melioidosis burden in Thailand. However, theoretical analysis 

including the basic reproduction number, equilibrium point and its stability analysis 

and control model had not been performed in their model.  

Therefore, in this study a compartmental mathematical model which involves 

bacteria which caused the melioidosis transmission incorporating with hygiene care 

and treatment control is constructed. Both theoretical and numerical analysis is 

performed and basic reproduction number is calculated together with its sensitivity 

indices. Further, the model is extended to optimal control model to determine 

optimal strategies for controlling the spread of the disease overall. 
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MODEL FORMULATION 

  

The model in this study involves the effect of hygiene care and treatment on 

melioidosis transmission. The model contains 4 subclasses which are S  is the 

number of susceptible individuals, E  is the number of exposed individuals, I  is the 

number of melioidosis infected individuals,  R  is the number of recovered 

individuals, and B  is the concentration of bacteria Burkholderia pseudomallei. The 

schematic diagram of the model is shown in Figure 1.  

 

 

Figure1: A schematic diagram for the transmission of melioidosis. 

 

 

The model is given by the following system of differential equations. 

1(1 )
dS

u SB S
dt

 = − − −                                                            (1) 

1(1 ) ( )
dE

u SB E
dt

  = − − +                                                       (2) 

2( )
dI

E u I
dt

d = − + +                                                                         (3) 

2

dR
u

dt
I R= −                                                                               (4) 

( ) ,
dB

E I B
dt

 = + −                                                                              (5) 

with initial condition 

 ( ) ( ) ( ) ( ) ( )0   0,  0   0,  0   0,  0   0,  0   0S E I R B     . 
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The parameters used in this model are defined as   is the recruitment rate,   is the 

transmission rate,   is the natural death rate,    is the rate at which exposed 

individuals become infected, d  is the disease induced death rate,   is an increase 

rate of bacteria by E  and I ,   is the bacteria death rate, 
1u  is the efficiency of 

hygiene care control of susceptible individuals, and 
2u  is the rate of treatment 

control for infected individuals. 

 

BOUNDARY OF SOLUTIONS 

 The boundary of solutions of the system of equation (1) – (5) is determined. 

By setting N S E I R= + + + , we have 0( ) tN t N e 

 

−  
− − 
 

 . When t → , we have 

( )N t


→ , implying that 0 ( ) .N t


   Hence, the considered region for this model 

is 






 

= +


NRIES :),,,( 4 . All solutions of this model are bounded and enter the 

region  . Therefore,  is a positively invariant. That is every solution of this model 

remains there for all 0.t   

 

EQUILIBRIUM POINT OF THE MODEL  

There are two equilibrium points in this model which are: 

i. Disease – free equilibrium point 
0 0 0 0 0 0 , 0, 0, 0, 0( , , , , ) ( )E S E I R B




= =  . 

ii. Endemic – equilibrium point * * * * *

1
, , , ,( )E S E I R B=  where 

 2

1

*

2

( )( )
,

(1 ) ( )

u

u u

d
S

d

   

  

+ + +
=

− + + +
 

 
*

* 2( )
,

u d I
E





+ +
=  

2 1 2

1 2

*

2

( )( ) (1 ) ( )
,

(1 )( )( ) ( 2 )

u u u

u u u

d d
I

d d

       

    

+ + + + − + + +
=

− + + + + +
 

2

*

* ,
u I

R


=  

and  
*

* 2( )
.

u d I
B

  



+ + +
=  
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Basic reproduction number ( 0R  )  

 The basic reproduction number of this model is calculated by using the next 

generation method (van den Driessche et al., 2002). From our model, we have 

   
0

1 2

2

(1 ) (

( )( )

)u u
R

u

d

d

  

  





−  +
=

+

+ +

+ +
.                (6) 

 

 

LOCAL STABILITY ANALYSIS 

The local stability of each equilibrium point within this model is determined 

from the Jacobian matrix at that equilibrium point of the system of equations (1) - 

(5). The Jacobian matrix is 

 

1

1

2

2

(1 ) 0 0 0 0

(1 ) ( ) 0 0 0

( , , , , ( )0 0 0

0 0

0

) .

0

0

u

u

u

B

B

J S E I R B d

u



  











− −

− − +

− + +

− 
 
 
 =
 
 




−


 −

           (7) 

 

Theorem 2.1 (local stability at 
0

E ) If 
0

1R  , the disease – free equilibrium point 

(
0

E ) is locally asymptotically stable. If 
0

1R  , the disease-free equilibrium point 

(
0

E ) is unstable. 

Proof. The Jacobian matrix of the system of equations (1) - (5) at 
0

E  is 

 

         

2

1

1

2

(1 )
0 0 0

(1 )
( )0 0 0

( )0 0 0

0 0

( ,0,0,0,0)

0

0 0

.

u

u

u d

u

J





  







 





 
 −
 
 

  
=  
 
 
 
 


− −


−

− +

+

−

− 

− +

                    (8) 

 

From Jacobian matrix above, we set 
0
)det( ( ) 0J E I− =  to find the eigenvalues, then 

we obtain 
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3 2

2 2 2

2

2

1 1

( 2 ) 2

)

( )( )( ( ( ) ( )( )

(1 ) (1 ) (
) ( )( ) ) 0.

u u u

u u u
u

d d d

d
d

       

 
 

      

 


 
 

 

+ + + + + + + + + + +

+ +

− − − − + + −

−  − 
+ −+ + =

+
+

  

Thus, 1 2 0,  = = −   and 

3 2

2 2 2(( 2 ) ( ) ( ( )2 )u u ud d d         + + + + + + +++ + + ++  

1
2

1 2(1 ) (1 ) (
) (

)
)( ) 0

u u u
u

d
d

   
 

 


 
 

+ + +
+ + +

−  − 
− + − =  which is 

considered in the form of
2

3 2

31 0.a a a  + + + =  Therefore, 
21 2 ua d  + + + += , 

22 2
1(1 )

( ) ( )( )2
u

u ud da
 

    


− 
= + −+ + + + + +  and 

3 2 0)( ) (1 ).( u d Ra    + + + −=  

It is clearly seen that 1 0a   and 3 0a   when
0

1R  . Furthermore, by our calculation 

which is omitted here we also obtain that 1 2 3a a a  when
0

1R  . Therefore, by Routh-

Hurwitz Criterion the disease – free equilibrium point is locally asymptotically 

stable when
0

1R  .   

Theorem 2.2 (local stability at 
1

E  ) When 
0

1R  , the endemic equilibrium point (
1

E ) 

is stable if it satisfies the Routh-Hurwitz criterion.  

Proof. Considering from Jacobian matrix of endemic equilibrium point, we have 

1 1

1 1

*

2

2

*

* *

* * * * *

(1 ) (1 )0 0 0

(1 ) (1 )( ) 0 0

( )0 0 0

0 0

( , , , , ) .

0

0 0

u u

u u

u

B

B

J S E I

S

S

R B d

u

 

  











− − − −

− −− +

− + +

−

−

 −
 
 
 =
 
 
 
 

   (9) 

Setting 1det( ( ) ) 0,J E I− =  we have the first eigenvalue  0−=  . The rest of 

characteristic equation is considered in the form of 4 3 2

1 2 3 4 0,a a a a   + + + + =  

where 
*

1 2 1( ) + ( ) +  +  + (1 ) 0,a u d u B     = + + + −   

* *

2 1 2 1 2( ) (1 )  + ( )( ) +  ((1 ) )( 3 ),a u S u d u B u d            = + − − + + + − − + + + +

 
* *

3 2 1 2 1( ) ( ) (1 )( ) ((1 ) )(( )a u d u u d S u B           = + + + − − + + + − + + −  

       * * *

1 2 1 1(1 ) ( )( )) (1 ) ((1 ) ),u S u d u S u B         − + + + + + + − − −  

* *

4 1 2 1 1((1 ) )(( )( ) (1 )( ) )a u B u d u u d S        = − + + + + − − + +  

      * *

1 1 2(1 ) ((1 )( ) ).u S u u d B    + − − + + −  

By using Routh-Hurwitz Criterion for 4,n =  the endemic equilibrium point 

is stable if 3 40, 0a a   and 2 2

1 2 3 3 1 4.a a a a a a +  
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GLOBAL STABILITY ANALYSIS 

 

Theorem 2.3 (global stability at 
0

E ) If 
0

1R  , then 
0

E  is globally asymptotically 

stable. 

 

Proof. Let the Lyapunov function be as follows: 

2

2 2

( ) 1

( )( ) ( )

u d
L E I B

u d u d

   

      

   + + +  
= + +     

+ + + + +     
 

Calculate the derivative of L together with the use of boundary of solutions, we 

obtain

 

1 2 1 2

0

2 2

(1 ) ( ) (1 ) ( )
' 1 1 ( 1)

( )( ) ( )( )

u S u d u u d
L B B B R

u d u d

       

       

   − + + + −  + + +
= −  − = −   

+ + + + + +      

 

When 0 1R  , we obtain that ' 0L   and ' 0L = when 0.E I B= = =  Hence, 0E  is 

globally asymptotically stable when 0 1.R   

 

Theorem 2.4 (global stability at 
1

E ) The endemic equilibrium point is globally 

stable when 0 1R  . 

 

Proof.  We have used the geometric approach by Li and Muldowney (1993) to prove 

this Theorem. Due to the long calculation, it is omitted here. 

 
 

SENSITIVITY ANALYSIS 

 The sensitivity indices are calculated by using the normalized forward 

sensitivity index technique (Ngoteya and Gyekye, 2015: Samsuzzoha et al., 2013). 

With the use of parameters value in Table 2, the sensitivity indices are given in 

Table 1. The results show that to reduce the value of 0R , we could try to increase the 

value of 1 2, , , ,u u   and d , respectively, whereas we could try to reduce the value 

of ,  and  , respectively. 
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                Table 1: Numerical values of sensitivity indices of 
0R
 

Parameters Index at Parameter Value
 

Sign 


 

+1.0000 positive
 


 +1.0000 positive

 


 
+1.0000 positive

 
d

 
-0.0341 negative

 
  -0.4708 negative 


 -0.4716 negative

 
2u
 -0.4943 negative

 


 -1.0000 negative
 

1u
 -1.0000 negative

 
 

NUMERICAL SIMULATION 

 In this section, the system of equations (1) – (5) is numerically solved by using 

Euler’s method. The parameters within this model are chosen as the appropriate and are 

shown in Table 2. The numerical results are shown in Figure 2 – 3. 
 

Table 2: Parameters values used in numerical study 

Parameter Description Value Reference 

  The recruitment rate 1.000000 per 

week 

Assume 

  The transmission rate 0.004000 per 

week 

Khan, M.A. et al., 2014 


 The natural death rate 0.000296 per 

week 

Pongsumpun, P. 2017 

  The rate which exposed 

individuals become 

infected individuals 

0.600000 per 

week 

Tilahun G.T. et al., 2017 

d  The disease induced 

death rate 

0.034500 per 

week 

The bureau of 

epidemiology, 2016 

  An increase rate of bacteria 

by E  and I  

0.800000 per 

week 

Tilahun, G.T. et al., 

2017 

       
  The bacteria death rate 0.500000 per 

week 

Assume 

1u  The efficiency of 

hygiene care control of 

susceptible human 

0.500000 per 

week 

Variable 

2u  The rate of treatment 

control for infected 

individuals 

0.500000 per 

week 

Variable 



39                                                      NU. International Journal of Science 2019; 16(2) : 31-48                                                                                                                                                                                                  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Numerical solution of system of equations (1) - (5) obtained using 

parameters: 1, 0. , 0.000296, 0.600000, , 0.8000000, 0.500000004000 0.034500d     = = = = = = =  where 

( )a  is the population of exposed individuals ( )E , ( )b  is the population of 

melioidosis infected individuals ( )I  and ( )c  is the concentration of bacteria 

Burkholderia pseudomallei  ( )B , when 
1u  varies. 

 

Figure 2 shows that when the efficiency of hygiene care control 
1( )u  increases, the 

number of exposed individuals, infected individuals and the concentration of 

bacteria decrease, respectively. This indicates a good impact of hygiene care in 

reducing the melioidosis transmission. 
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Figure 3: Numerical solution of system of equations (1) - (5) obtained using 

parameters: 1, 0. , 0.000296, 0.600000, , 0.8000000, 0.500000004000 0.034500d     = = = = = = =  where 

( )a  is the population of exposed individuals ( )E , ( )b is the population of 

melioidosis infected individuals ( )I  and ( )c  is the concentration of bacteria 

Burkholderia pseudomallei ( )B , when 
2u  varies. 

 

Figure 3 shows that when the rate of treatment control 
2( )u  increases, the number of 

exposed individuals is not changed whereas the number of infected individuals and 

the concentration of bacteria dramatically decrease and tend to reach lower 

equilibrium value. Therefore, treatment of infected individuals should be 

encouraged. 
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OPTIMAL CONTRAOL 

In this section, we apply the optimal control in our model i.e. the system of 

equation (1) - (5). For the control problem, we consider two control variables, i.e. 
1u  

represents the rate of hygiene care control for susceptible individuals and 
2u  

represents the rate of treatment control for infected individuals. Assume further that 

  is the rate of normal treatment for patient equals to 0.5 per week. A diagram of 

this control model is shown in Figure 4. 

 

 
Figure 4: Diagram of the optimal control model of melioidosis. 

 

This model can be written as the system of the equations as follows: 

1(1 )( )
dS

u t SB S
dt

 = − − −                   (10) 

1(1 ) ( )( )
dE

u t SB E
dt

  = − − +                                                             (11) 

2( )( )
dI

E u t I
dt

d  = − + + +                                                              (12) 

2( ( ) )
dR

u t
dt

I R = + −                                                                       (13) 

( ) .
dB

E I B
dt

 = + −                                                                            (14) 

All parameters definitions are the same as the system of equations (1) – (5). The 

model is analyzes basing on the theory of Pontryagin et al. (1986). For the optimal 

control model, the objective of the model is given by: 
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                    ( )2 2

1 2 1 2 3 1 4 2

0

1
( , ) min ( ) ( ) ,

2

T

J u u M E M I M u t M u t dt
 

= + + + 
 
                         (15) 

 

with initial condition (0) 0, (0) 0, (0) 0, (0) 0S E I R     and (0) 0B  . The constants  

1 2 3, ,M M M  and 4M are weight constants and the terms 2

3 1 ( )M u t  and 

2

4 2 ( )M u t represent the costs associated with hygiene care control and treatment 

control for melioidosis infected, respectively. 

We can determine an optimal solution of this optimal control problem by 

considering the Lagrangian and the Hamiltonian for the problem. The Lagrangian of 

the optimal control problem is given by 

( )2 2

1 2 1 2 3 1 4 2

1
( , , , ) ( ) ( ) .

2
f E I u u M E M I M u t M u t= + + +             (16) 

Applying Pontryagin’s Minimum Principle (PMP), we form the Hamiltonian and 

derive the optimality system: 

( )  2 2

1 2 3 1 4 2 1

1
( ) ( ) (1 ( ))

2
SH M E M I M u t M u t u t SB S  = + + + + − − −  

   1 2(1 ( )) ( ) ( ( ) )E Iu t SB E E u t d I       + − − + + − + + +  

   2( ( ) ) ( )R Bu t I R E I B     + + − + + − ,              (17) 

 

 

where , , ,S E I R    and B are the adjoint functions associated with the state 

equations for , , ,S E I Rand B , respectively. The adjoint equations by setting 

( ) , ( ) , ( ) , ( )S t S E t E I t I R t R= = = =  and ( )B t B= , are 

'

1 1(1 ( )) (1 ( )) ,S S E

H
u t B u t B

S
     


    = − = − − − + + −    

 

 '

1 ,E E I B

H
M

E
       


 = − = − − + + + 

 

   '

2 2 2( ) ( ) ,I I R B

H
M u t d u t

I
       


 = − = − − + + + + + + 

 

 ' ,R R

H

R
  


= − = − −


 

'

1 1(1 ( )) (1 ( )) .B S E B

H
u t B u t B

B
      


    = − = − − − + − −              (18)
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The optimal control variables *

1 ( )u t  and *

2 ( )u t  are given by 

  *

1 max

3

( )
( ) max 0,min , 'E S SB

u u
M

t
    −  

=   
    

 

  *

2 max

4

( )
( ) max 0,min , ,I R I

u
M

t u
   − 

=   
                   (19)

 

where it is subject to the constraint 
1 max0 ( )u t u  and 

2 max0 ( )u t u  . The 

characterization of the optimal control variables *

1 ( )u t  and *

2 ( )u t  are given by:                             

1

3

( )
( ) ,E S SB

u t
M

  −
= and 

2

4

( )
( ) .I Rt

I
u

M

 −
=  

 

 

Numerical simulation of optimal control 

 The numerical results of this optimal control model are shown in Figure 5 

and 6. We use the forward – backward sweep method and solved the optimality 

system numerically using Euler’s method. 
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Figure 5: Numerical simulation of ( )a  population of E , ( )b  population of I and ( )c  

the concentrate of B  in the case of with and without controls. 

 

Figure 5 (a) shows a large decrease in the number of exposed individuals at the peak 

in the controls case although between 2nd to 6th weeks, the number of exposed 

individuals is slightly more than in no controls case.  Figure 5 (b) and (c) 

demonstrates a dramatic reduction in the number of infected individuals and a clear 

decrease in the concentration of bacteria in the controls case, respectively. 

 

 

 

Figure 6: Dynamic of ( )a  hygiene care control 
1( )u  and ( )b  treatment control 

2u . 

 

Figure 6 (a) shows that we may keep the hygiene care control for susceptible 

individuals 
1( )u at the maximum rate of 90% from the beginning until the 5th week 

and may drop the control to less than 10% in the 6th week, after that we are required 

to increase the rate of the control gradually to reach approximately 20% in the 9th 

week and then can drop it again. However, Figure 6 (b) indicates that we are 

required to keep the treatment control for infected individuals 2( )u  at the maximum 

rate almost all the time in order to keep the number of exposed and infected 

individuals and the concentration of bacteria in the low level as Figure 5. 
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CONCLUSIONS 

 In this study, a compartmental model of melioidosis transmission involving 

hygiene care and treatment is presented. Two main equilibrium points (i.e. disease-

free and endemic) are obtained. The basic reproduction number is 

0

1 2

2

(1 ) (

( )( )

)u u
R

u

d

d

  

  





−  +
=

+

+ +

+ +
, where it becomes a threshold for equilibria stability 

i.e. when 0 1R   the disease-free equilibrium point is both locally and globally stable 

and unstable otherwise. When 0 1,R   the endemic equilibrium point is globally 

asymptotically stable. Our numerical results demonstrate that the efficiency of 

hygiene care control of susceptible individuals 1u shows the impact in reducing the 

number of exposed individuals and slightly reducing the number of infected 

individuals and the concentration of bacteria. On the other hand, the rate of 

treatment control for infected individuals 2u  gives a big impact in reducing the 

number of infected individuals and the concentration of bacteria dramatically 

whereas it does not change the number of exposed individuals. These results are 

confirmed by the sensitivity analysis results. Finally, optimal control model shows 

that with the combination of both control variables 1( )u t  and 2 ( )u t , the number of 

exposed and infected individuals and the concentration of bacteria are largely 

reduced. Therefore, both hygiene care and treatment controls should be encouraged 

as a promising approach to reduce the melioidosis transmission overall. 
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