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ABSTRACT 

  
This paper studies the spread of dengue fever in a mathematical model that 

incorporates data on public health interventions. In this model, the human population is 

divided into three types of individuals: Susceptible ( )hS , Infected ( )hI  and Recovered ( )hR .  

The mosquito population is divided into two types: Susceptible ( )vS  and Infected ( )vI . We 

examine the reproduction number 0( )R  and provides analysis of epidemic and endemic 

equilibrium points. Further, using optimal control techniques, we perform a study to 

investigate cost-effective solutions for time-dependent public health interventions in order to 

curb disease transmission in epidemic settings. MATLAB software was used for 

computations.   
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INTRODUCTION 

  

Dengue fever is a mosquito-borne tropical disease caused by the dengue 

virus. This virus is related to the viruses that cause West Nile infection and yellow 

fever. The dengue virus is transmitted by female mosquitoes, mainly of the species 

Aedes aegypti and, to a lesser extent, Ae. albopictus. The mosquito bites during 

daytime hours, particularly around the hours of dawn and dusk. There are four 

different strains of the dengue virus: DEN 1, DEN 2, DEN 3 and DEN 4. 

Accordingly to the World Health Organization (WHO) over 2.5 billion people are 

now at risk for Dengue. Currently, the WHO estimates that there may be 50-100 

million Dengue infections worldwide. Not only is the number of cases increasing as 

the disease spreads to new areas, but explosive outbreaks are also occurring. The 

threat of a possible outbreak of dengue fever now exists in Europe.  Local 

transmission of dengue was reported for the first time in France and Croatia in 2010 

and imported cases were detected in three other European countries. In 2012 an 

outbreak of dengue on the Madeira Islands of Portugal resulted in over 2000 cases, 

and imported cases were detected in 10 other countries in Europe apart from 

mainland Portugal. In 2013, cases have occurred in Florida (USA) and Yunnan 

(China). Dengue is more common among older children, adolescents and adults. The 

risk of travelers catching dengue depends on several factors, including: the countries 

they visit, how long they stay in an endemic area (although even short-term visitors 
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may be vulnerable to dengue), the season of travel (since mosquitoes breed in fresh- 

standing water, such as puddles and collected rainwater), and the intensity of dengue 

transmission in that area. Growing populations and an increase in global travel have 

resulted in the transmission of the virus between different populations. Transmission 

of the dengue virus happens in a cycle. An infected human is bitten by a mosquito, 

the infected mosquito then bites another human, and the cycle continues. 

Sometimes, symptoms of dengue are mild and can be mistaken for those of the flu or 

another viral infection. Younger children and people who have never had the 

infection before tend to have milder cases than older children and adults. However, 

serious problems can develop. These include dengue hemorrhagic fever, a rare 

complication characterized by high fever, damage to lymph and blood vessels, 

bleeding from the nose and gums, enlargement of the liver, and failure of the 

circulatory system. The symptoms may progress to massive bleeding, shock, and 

death. This is called dengue shock syndrome (DSS).  Unfortunately, since dengue is 

a virus, traditionally there has not really been anything doctors can do to 'cure' it. 

Until recently all the patient could do is rest, take painkillers and drink plenty of 

water. 

 Mathematical modeling is a powerful tool which can test and compare 

different intervention strategies that might be useful in controlling or eliminating 

dengue. Various mathematical models can help people conceptualize the 

transmission dynamics in a quantitative way as well as enable the testing of different 

hypotheses to understand their importance. In 2003, Derouich et al. presented a 

paper dealing with the succession of two epidemics caused by two different strains 

of dengue. The dynamics of the disease is studied by a compartmental model 

involving ordinary differential equations for the human and the mosquito 

populations. Derouich’s model allows for better understanding of the disease 

dynamics. In 2013, Side and Noorani proposed a SIR (Susceptible-Infected-

Recovered) model with the dynamics of vector transmission was included. They 

investigated the re-breeding parameter value based on the number of reported cases 

of dengue fever in South Sulawesi (Indonesia) and Selangor (Malaysia). The results 

showed that the transmission rate between humans and mosquitoes is a very 

important role in the disease outbreaks in both countries. In 2015, Phaijoo and 

Gurung, they formulated a multipatch model to investigate the impact of 

temperature and human movement in the transmission dynamics of dengue fever. 

The study further explored the dynamics of the disease between humans and 

mosquitoes. The results suggested that proper management of human movement 

between patch helps to reduce the spread of dengue fever. Meanwhile, according to 

the article on website: The Economics Times; "Mathematical model could help 

predict dengue fever epidemic" points out that the model in the form of Susceptible-

Infected-Recovered (SIR) is important to study strategies to control the disease and 

how a variety of neighbor conditions would affect the spread of the disease.  

"The SIR-Network model can be used to predict whether local interventions - like 

cleaning up standing water in containers - in one or two neighborhoods could affect 

the prevalence of dengue across the city," said coauthor Daniel Coombs, professor at 

the University of British Colombia in Canada. 
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"We give formulae that describe whether an epidemic is possible, in terms of human 

travel patterns among neighborhoods, mosquito populations and biting rates in each 

neighborhood," Coombs said.  

  The researchers applied the SIR-Network model to dengue fever data, which 

had been updated several times, from the epidemic outbreak of 2007-2008 in various 

neighborhoods of Rio de Janeiro, Brazil, and soon discovered several interesting 

features of the epidemic. These constructed models inspired development of this 

paper’s mathematical model of dengue fever by analyzing the (global) stability and 

using optimal control study. 

 

METHODS AND MAIN RESULTS 

1. Model formulation 

 

 hN  and vN  represent the population of humans and mosquitoes (“v” for 

vector”), respectively. The population of mosquitoes is divided into two groups: vS  

and ,vI  where vS  represents the susceptible mosquitoes and vI  represents the 

infected mosquitoes with dengue virus. The population of humans is classified into 

three types: susceptible ( ),hS  infected ( ),hI  and recovered ( ).hR  Note that for the 

purposes of efficiency in this study, all infected mosquitoes and humans are 

considered immediately infectious, even though in actuality there is an incubation 

period between exposure to the disease and the ability to transfer it to other 

individuals. The natural birth and death rates of humans is considered the same for 

the purposes of this model and is denoted by .h  Similarly mosquito birth and death 

rates are also treated as equal and denoted by .v  h  and v  represent the effective 

human to mosquito contact rate and the effective mosquito to human contact rate, 

respectively.   represents the disease related death rate. The recovery rate for the 

infected population is denoted by .  The rate at which infected people receive 

medical treatment for the disease is represented by 1 ,  and the rate at which infected 

mosquitoes are eliminated is represented by 2 .  Diagram of the model is represented 

as follows: 
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The model comprises the following linear system of differential equations: 

  

,h h v

h h h h

h

dS I
N S

dt N


 

 
= − + 

 
   (1) 

1( ) ,h h v h

h h

h

dI I S
I

dt N


  = − + +    (2) 

1( ) ,h

h h h

dR
I R

dt
  = + −     (3) 

2 ,v v h

v v v v

h

dS I
N S

dt N


  =

 
 
 

− + +    (4) 

( ) .v v v h

v v

h

dI S I
I

dt N


 = − +    (5) 

where h h h hN S I R= + +  and .v v vN S I= +  

 

2. Epidemic analysis 

 

 The analysis of this model starts with examining the disease-free 

equilibrium point (DFE) and calculating the basic reproduction number 0( ).R  By 

setting 0 ,h v hI I R= = =  the DFE 0( )ò can be obtained as follows: 

0

2

( , , , , ) ,0,0, ,0 .v v

h h h v v h

v

N
S I R S I N



 

 
= =  

+ 
ò  

  Note that h h h hS I R N+ + =  is a constant which allows us to drop the 

equation (3) of our system and consider a four-dimensional system to compute the 

basic reproduction number 0( )R  by analyzing the eigenvalues of the Jacobian matrix 

of the system (1), (2), (4) and (5) as follows: 

 

The Jacobian matrix of the equations (1), (2), (4) and (5) at 0ò  is given by 

1

20

2

2

0 0

0 ( ) 0

0 ( ) 0( ) ,

0 0

( )

( )
( )

h h

h h

v v

v

h v

v v v

v

h v

vN
J

N

N

N

 

   

 
 

 

 
 

 

− − 
 

− + +
 
 

− − +=  
+ 

 
− + 

+  

ò   

and the characteristic equation of the matrix 0( )J ò  is 

( )

( )

0

2

12 1

2

0 ( )

 ( ) ( ) ( ) (
( )

)( ) .v

h v v v

h h v h v

h v

det J I

N

N



  
                

 

= −

  
= + + + + + + + + + + + −  

+   
+

ò

The eigenvalues of 0( )J ò  are 21 2,  ( ).h v    = − = +−  The final portion can be put 

into a quadratic equation of the form 0 1 2

2 0a a a + + =  where 
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0 1 11,  h va a     = = + + + +  and 
2

2 1( )( ) .
( )

h v v v

h v

h v

N
a

N

  
    

 

 
= + + + −  

+ 
 

The Routh-Hurwitz criterion requires 1 20,  0a a   as the necessary and sufficient 

conditions for the local asymptotic stability. It can be seen clearly that 
1 0,a   and to 

see if 2 0,a   the following inequality can be used: 

2

2 10 ( )
( )

( ) .v v v

h v h

h v

N
a

N

 
     

 

 
  + + +   

+ 
 

Thus 
2 1

1 .
( )( ) ( )

h v v v

h v h v

N

N

  

      


+ + + +
 Now we define  

2

0

1

.
( )( )

:
( )

h v v v

h v h vN
R

N  

      + + + +
=    

 

Theorem 1 When 0 1,R   the disease-free equilibrium point 0( )ò  is locally 

asymptotically stable. 

 

  To determine the global asymptotic stability of the disease-free equilibrium 

point, the following lemma is introduced by Castillo-Chavez et al. [7] can be 

applied.  

 

Lemma 2 Consider a model system written in the form 

1
1 2

2
1 2 1

( , ),

( , ),  ( ,0) 0

dX
F X X

dt

dX
G X X G X

dt

=

= =

 

where 1

mX   denotes (its components) the number of uninfected individuals and 

2

nX   denotes (its components) the number of infected individuals including 

latent, infections, etc.; *

0 1( ,0)X X=  denotes the disease-free equilibrium of the 

system. Also assume the conditions ( 1)H  and ( 2)H  below: 

  ( 1)H  For 1

1( ,0),
dX

F X
dt

=  *

1X  is globally asymptotically stable; 

 ( 2)H 1 2 2 1 2
ˆ( , ) ( , ),G X X AX G X X= −  1 2

ˆ ( , ) 0G X X   for 1 2( , ) ,X X   where 

*

1

2

( ,0)
G

A X
X


=


 is an M-matrix (the off diagonal elements of A are nonnegative) and 

  is the region where the model makes biological sense. Then the DFE *

0 1( ,0)X X=  

is globally asymptotically stable provided that 0 1.R   

 

Theorem 3 The disease-free equilibrium point 0( )ò  of the model is globally 

asymptotically stable if 0 1.R   
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 Proof. To adopt the notations in Lemma 2 and verify the conditions  ( 1)H  

and ( 2),H  in our ODE system, 21 ( , , ),  ( , )h h v h vX S R S X I I= =  and *

1

2

( ,0, ).v v

h

v

N
X N



 +
=  

Note that  

1

1

2

( ,0) .

( )v

h h h h

h h

v v v

N S
dX

F X R
dt

N S

 



  

− 
 

= = −
 
 − + 

  

That solution can be found with 0( ) ,ht

h hS Ct N e
−

= +  1( ) ht

h CR t e
−

=  and 

2( )

2

2 .
)

( )
(

v tv v

v

v

N
S t C e

 

 

− +

+
= +  As ,t → ( ) ,  ( ) 0h h hS t N R t→ →  and 

2

( .
( )

) v v

v

v

N
S t



 +
→  

Thus *

1

2

( ,0, )v v

h

v

N
X N



 +
=  is globally asymptotically stable.  

Next, consider 

  1

1

2

( )

( , ) ,

( )

v h

h v

v v

h

h h

h

v

h

I S
I

N
G X X

I S
I

N


  


 

 
− + + 

 =
 

− + 
 

 so 
1

2

( )

( )
( )

h h

v

v

v h

vv
A N

N

   

 
 

 

− + + 
 =
 − +
 + 

  

where *

1

2

( ,0)
G

A X
X


=


 with all non-negative off-diagonal elements.  

Recall from Lemma 1, the condition ( 2),H  

1 2 2 1 2
ˆ( , ) ( , ),G X X AX G X X= −  

this implies that 

1 2

2

( )

ˆ ( , ) .

( )

v

h h

h v v

h

h

v

vh

v

I
N S

N
G X X

I N
S

N



 

 

 
− 

 =
  

−  
+   

  

From the equation (1), it can be observed that 

      = . 

h h v

h h h h

h

h v h

h h h h

h

dS I
N S

dt N

I S
N S

N


 


 

 
= − + 

 

− −

  

Since 0,vI   we obtain that  

.h

h h h h

dS
N S

dt
  −  

We can write 

.h

h h h h

dS
S N

dt
 +      (6) 

By using the integrating factor technique, let : .
h

h
dt t

y e e
 = =   
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Multiplying on both sides of an inequality (6) with y,  thus 

( ) ( ) ( )

( )

( )

1

1

                

          

                    

         

     

       

                   

              

h h h

h h

h h

h

h

t t t

t t

t t

t

h

h h h h

h h h

h h h

h h h

h

h h

t

e e e

d
e e

dt

d
e dt e dt

dt

e
e

dS
S N

dt

S N

S N

S N

S N

C

C

  

 

 




 










 

 

  +



+

+

 

.ht
e

−

 

As ,  .h ht S N→ →  Hence .h hS N  Similarly, the equation (4)  

2

2       = .

v v h

v v v v

h

v h v

v v v v v

h

dS I
N S

dt N

I S
N S S

N


  


  

= − + +

−

 
 
 

− −

 

Since 0,hI   we obtain that 

( )2 .v

v v v v

dS
N S

dt
   − +    (7) 

We can write 

( )2 .v

v v v v

dS
S N

dt
  + +  

By using the integrating factor technique, let 
( ) ( )2 2: .

v v
dt t

z e e
   + += =   

Multiplying on both sides of an inequality (7) with ,z  then 

( )( ) ( )( )( ) ( )( )
( )( ) ( )

( )( ) ( )

( )

2 2 2

2 2

2 2

2

2

                                

                          

                                        

v v v

v v

v v

v

h

v v v v

v v v

v

t t t

t

t

v

t t

v

t

e e e

d
e e

dt

d
e dt e dt

d

dS
S N

dt

S N

e

S N
t

     

   

   

 

  





+ + +

+ +

+ +

+

+ 



+



  
( )

( )

( )
( )

2

2

2

2

2

2

                                           

                 

 

 

    .     

v

v

v v v

v

v

t

v

t

v v

S
e

C

C e

N

N
S

 

 


 



 

+

− +

  +
+

 +
+

 

As 
( )2

 ,  .v v

v

v

N
St



 
→ →

+
 Thus 

( )2

.v v

v

v

N
S



 


+
 Hence 1 2

ˆ ( , ) 0.G X X   Therefore, the 

DFE *

0 1( ,0)X X=  is globally asymptotically stable. 
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3. Endemic analysis 

 

The stability of the DFE determines the short-term epidemics of the disease, 

whereas its dynamics over a longer of time is characterized by the stability at the 

endemic equilibrium. This section will analyze the endemic properties of this 

dengue fever model. The first thing to examine is the existence of the positive 

endemic equilibrium. The endemic equilibrium of the model is denoted by 
* * * * * *( , , , , )h h h v vS I R S I=ò  which is determined by 

* * * *

* * *2 1

* *

12

( )( ) ( )
,  ,  ,  

( )( )( )

h h h v h v h v h h v h h

h h h

h h hh h v h v h v h h v v v h

N N N I N I S I
S I R

NN N I N N I

        

           

+ + + +
= =

+ ++ + + +
=

*

*

2

,  
( )

v v h

v

h v h v h

N N
S

N I N



  
=

+ +
and 

*

*

*

2

.
( )( )

v v v h h

v

h v h v h v h

N N I
I

N N I N

 

    
=

+ + +
 

Finally, the following can be obtained * 2 0

1

( )( ) (
.

1)
 

( )( ( ) )

h h v v h

h

h h h v v h v v v

N N R
I

N N

    

         

+ + −

+ + + +
=  

It is clear that * 0hI   when 0 1.R   That leads to the result below: 

 

Theorem 4 The positive endemic equilibrium point *( )ò  of the model exists and is 

unique if 0 1,R   and if 0 1R   then there is no positive endemic equilibrium. 

 

  The next step is to analyze the stability properties of the endemic 

equilibrium point. The following result can be verified regarding the local stability. 

 

Theorem 5 When 0 1,R   the endemic equilibrium point *( )ò  is locally 

asymptotically stable. 

 Proof. The first step, we split to consider the endemic equilibrium point as 
* * * *

1 ( , , )h h hS I R=ò  and * * *

2 ( , ).v vS I=ò  Note that h h h hS I R N+ + =  is a constant which 

allows us to drop the equation (3) of our system. The Jacobian matrix of the 

equations (1)-(2), the human population at *

1x = ò  is given by 

*

* * *

*

1

0

( , , ) ,

( )

h v

h

h

h h h

h v

h

h

I

N
J S I R

I

N





  

  
− +  
  =

 
 − + +
  

 

and the characteristic equation of the matrix *

1( )J ò  is 

( ) ( )
*

*

1 10 ( ) ( ) .h v

h h

h

I
det I J

N


      

 
= − = + + + + + 

 
ò  We obtain 

*

1

h v

h

h

I

N


 


= +−


 
 

 

and 2 1( )h   = − + +  which both of the eigenvalues are negative.  

  Next, the Jacobian matrix of the equations (4)-(5), the mosquito population 

at 
*

2x = ò  is given by 
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*

2

* *

*

0

( , ) ,

( )

v v

v

v h

v

h

h

v

h

I

N
J S I

I

N


 


 

  
− + +  
  =

 
 − +
  

 

and the characteristic equation of the matrix *

2( )J ò  is 

( ) ( )
*

*

2 20 ( ) ( ) .v h

v v

h

I
det I J

N


      

 
= − = + + + + + 

 
ò  Then 

*

3 2

v h

v

h

I

N


  =

 
 


+ +


−  

and 4 ( )v  = − +  which both of the eigenvalues are negative. By using the stability 

properties of a linear system theorem, it can be concluded that  the endemic 

equilibrium point * * *

1 2,( )=ò ò ò  is locally asymptotically stable.    

 

4. Optimal control 

 

Now to the general model (1)-(5), time-dependent control profiles 
1( )t  and 

2 ( )t  are added. The system is considered with a time interval of [0,T].  The 

functions ( )1 t  and ( )2 t  are assumed to be at least Lebesgue measurable on [0,T].  

The control set is defined as  

( ) 1 2 1 1max 2 2max( ), ( ) | 0 ( ) ,0 ( )t t t t      =      

where 
1max  and

 2max  denote the upper bounds of successful treatment on infected 

humans and elimination rate of infected mosquitoes, respectively. The bounds 

reflect practical limitation on the maximum rate of control in given time period. This 

optimal control aims to minimize the total number of infections and the costs of 

controlling the disease over the time interval  0,  ;T  i.e., 

      
1 2

2 2

11 1 12 2 21 1 22 2
( , 0)

[ ( ) ( ) ( ) ( ) ( )min  ( ) ( )]h h v

T

I t c t I t c t S t c t tc dt
 

   


+ + + +    

where 11 12 21, ,c c c  and 22c  are appropriate units that define the appropriate costs 

associated with the control. First the adjoint functions are defined as , ,
h h vS I S    and 

vI is associated with the state equations for , ,h h vS I S  and ,vI  respectively. 

Hamiltonian, ,H  can be obtained by multiplying each adjoint function with the 

right-hand side of its corresponding state equation, and adding each of these 

products to the integrand of the objective function. As a result, the following is 

obtained: 

2 2

11 1 12 2 21 1 22 2

1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) .

h

h v v

h v
h h v S h h h h

h

h v h v h v v h
I h h S v v v v I v v

h h

I
H I t c t I t c t S t c t c t N S

N

I S I S I
I N S I

Nh N N


      

  
          

 
= + + + + + − + 

 

    
+ − + + + − + + + − +    

     
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To achieve the optimal control, the adjoint functions must satisfy 

,hS

h

d H

dt S

 
= −


 ,hI

h

d H

dt I

 
= −


 vS

v

d H

dt S

 
= −


 and vI

v

d H

dt I

 
= −


 with final-time 

conditions ( ) ( ) ( )0,  0,  0
h h vS I ST T T  = = =  and ( ) 0.

vI T =  The characterizations of 

the optimal controls ( )*

1 t  and ( )*

2 t  are based on the conditions 

1

0
H




=


 and 

2

0,
H




=


 respectively, subject to the constraints 

1 1max0   
 
and 

2 2max0 .    We 

obtain that ( ) ( )( )( )*

1 1 1maxmax 0,min ,t t  =  and ( ) ( )( )( )*

2 2 2maxmax 0,min ,t t  =  

where ( ) ( )11 211 / 2
hI h hI c It c  −=  and ( ) ( )12 2 22/ 2 .

vS v vS c St c  −=  The optimal control 

system, consisting of the state equations, the adjoint equations and the optimality 

conditions, has to be solved numerically. Numerical simulations have been 

conducted using various choices of cost parameters and time intervals, and a unique 

solution has been observed in each case. The numerical results clearly demonstrate 

that optimal control strategies can significantly bring down the number of infected 

individuals and infected mosquitoes. Some typical results are presented below. 

 

 

Table 1: Symbols and Parameter values. 

 

Parameter Value Reference Parameter Value Reference 

hN  10,100   Estimated   0.3201  Estimated 

vN  18,000  Estimated   0.19  Estimated 

h  3(3. pe139 1 y0 r da )−  [4] 
h  0.0075  [4] 

v  1/14  [4] v  0.00375  [4] 

11c  

21c  
2  

8  
Estimated 

Estimated 
12c  

22c  
0.01  

2  

Estimated 

Estimated 

 

5. Numerical simulation 

 

In this section, numerical simulations were performed using Euler's method 

with MATLAB.  
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Figure 1: the infected humans with medical treatment for the dengue disease 

(dashed line) and without medical treatment for the dengue disease (solid line). 

 

 
Figure 2: the infected mosquitoes with elimination (dashed line) and without 

elimination (solid line). 
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Figure 3 shows three phase portraits for the model with different initial conditions, 

and 
0 >1,R hI  vs. 

hS  of human populations. 

 

  As results above show that the infected humans with dengue virus have been 

reduced when received the medical treatment as the Figure 1 and the infected 

mosquitoes with dengue virus have approached to zero more quickly when there is 

the mosquito abatement as the Figure 2. Finally, the Figure 3 shows that all curves 

converge to the endemic equilibrium point with * *116.46,  1376.17.h hI S   This 

guarantees that the specific endemic equilibrium point ( )* * * *

1 ( , , )h h hS I R=ò  is locally 

(asymptotically) stable. 

   

CONCLUSIONS 

  

This study has presented a mathematical model of dengue fever which takes 

into account and analyzes both mosquito and human populations. This model has 

been constructed using both theoretical and numerical methods. In order to uncover 

the effects of the mosquito elimination rate and the medical treatment of infected 

humans on the spread of the disease, and in order to find ways to control the 

outbreak of dengue fever, an optimal control study was carried out. The stability of 

the disease-free equilibrium point and the endemic equilibrium point are controlled 

by the threshold number 0( ).R  If 0R  is less than one, then the disease dies out and 

the disease-free equilibrium point is stable. If 0R  is greater than one, then the 
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disease persists and the disease-free equilibrium point is unstable. In conclusion, the 

numerical simulations and theories are presented here have shown that attentive 

treatment of infected people and thorough elimination of mosquitoes can 

significantly reduce the number of infected humans with dengue fever.  
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