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ABSTRACT  

  
In this paper, we studied the spread of cholera in a mathematical model that 

incorporates data on public health interventions. We are interested in simulating cholera 

outbreaks  from  vibrio and flies transmission  to populations. The population of humans is 

classified into three classes; susceptible humans ( ) ,hS  infected humans ( )hI  and recovered 

human ( ).hR  The concentration of bacterial in the contaminated environment ( ).B  The 

population of flies is divided into two groups; susceptible flies ( )FS  and infected flies ( )FI  

individuals.  Equilibrium analysis is conducted in the case with constant control for both 

epidemic and endemic dynamics. Numerical simulations are used to verify the analysis, and 

optimal solutions are computed by using an optimal control study 
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INTRODUCTION  

  

In the past, there has been a worldwide outbreak of cholera, including one of 

the largest cholera outbreaks in modern history. Recent cholera in Haiti from 2010–

2011 with more than 530,000 reported cases and over 7000 deaths. Major cholera 

outbreaks also include those in Sierra Leone (2012), Nigeria (2010), Vietnam 

(2009), Zimbabwe (2008) and India (2007), among others. Most outbreaks are 

caused came from public health management and strategies to control the disease are 

not adequate. 

Mathematical modeling is a powerful tool which can test and compare 

different intervention strategies that might be useful in controlling or eliminating 

cholera, and mathematical modelling can be especially important to conserve limited 

resources. Various mathematical models can help people conceptualize the 

transmission dynamics in a quantitative way as well as enable the testing of different 

hypotheses to understand their importance. Numerous mathematical models have 

been published to analyze cholera outbreaks in an effort to better understand the 

complex disease transmission and determine adequate prevention and effective 
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control strategies (see, examples, (Codeco, 2001; Hartley et al., 2006; Modnak, 

2017; Neilan et al., 2010; Posny et al., 2015; Wang and Modnak, 2011; Thongtha 

and Modnak, 2017). In 2001, Claudia Torres Codeco proposed the reproduction rate 

of cholera is a function of social and environmental factors. It is necessary to 

determine the relative weights of each one of these components in order to develop 

appropriate control strategies (Codeco, 2001). In 2011, Jin Wang and Chairat  

Modnak (Wang and Modnak, 2011)  presented and analyzed a cholera 

epidemiological model with control measures incorporated by vaccination, 

therapeutic treatment, and water sanitation. They have extended  mathematical 

models of infectious diseases of  Rachael L. Miller Neilan  et.al. in (Neilan et al., 

2010). In 2015, Drew Posny et al. (Posny et al., 2015), presented a new deterministic 

cholera epidemiological model with three types of control measures incorporated 

into a cholera epidemic setting: treatment, vaccination and sanitation. They used a  

mathematical model of infectious diseases that plays a critical role in predicting and 

understanding disease mechanisms. Later in few years, Chairat  Modnak (Modnak, 

2017) proposed and analyzed a cholera mathematical model with vaccine being 

incorporated. The results show that using vaccination during cholera outbreaks at the 

very beginning of the onset can reduce the number of infections significantly. In the 

same year, Adison Thongtha et al. (Thongtha and Modnak, 2017) proposed a new 

model that consider human-to-human and fly-to-human transmission while human-

to-human transmission was defined in the context of infection by hyperinfertions 

vibrios (Hartley et al., 2006). As we all know that flies and bacteria can spread 

cholera, however, not many researchers are interested in considering flies as the 

main character. Actually, flies in Thailand can cause so many serious disease 

infectious. Therefore, in this study we will include fly population in our model to 

investigate cholera dynamics.  

In this study, we also use mathematical modeling incorporated with control 

measures and simulation techniques to shed light on the value of optimal control 

measures in controlling ongoing cholera outbreaks. Particularly, we will formulate a 

new optimal control model and explore optimal times during epidemics for 

deploying cholera vaccines. 

 

MATERIALS AND METHODS 

 

We modify the model of  Wang, J. et al. (Wang and Modnak, 2011) and 

Thongtha, A. et al. (Thongtha and Modnak, 2017) by adding vaccination control, 

treatment control, bacteria control and control by eliminating the flies. We let  hN   

and FN   represent the population of humans and flies, respectively. The population 

of humans is classified into three classes; susceptible humans ( ) ,hS   infected 

humans ( )hI  and recovered humans ( ).hR  Let B  be the concentration of bacterial   

in the  contaminated environment. The population of flies is divided into two 

groups: Susceptible flies ( )FS  and infected flies ( ).FI  
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Ingestion rates from the environment, the human-human interaction and the 

fly-human interaction are defined as ,e h   and ,F  respectively. Natural death 

and birth rate of humans and flies are given by h  and F  respectively.    is death 

rate of vibrio in the environment.   is the half saturation concentration of 

environmental vibrio. Recovery from cholera is at a rate   and  human contribution 

to vibrio chalerae is at a rate .  We let 1  represents eliminating the flies, 2  

represents for vaccination control, 3  represents for treatment control and  4  

represents for bacteria control. The dynamic system equations are the following:  

 

 

  

 

2 ,h
h h h h h h F h F h h h

dS B
N eS S I S I S S

dt B
     


= − − − − −

+
      (1) 

3( ) ,h
h h h h F h F h h h

dI B
eS S I S I I I

dt B
     


= + + − + −

+
          (2) 

2 3 ,h
h h hh hS I

dR
I R

dt
   = −+ +              (3) 

4 ,h

dB
I B B

dt
  = − −                        (4) 

1( ) ,F
F F F F h F F

dS
N I S S

dt
   = − + −                (5) 

.F
F h F F F

dI
I S I

dt
 = −                (6) 

 

Disease-free equilibrium 

With constant controls and setting 0h FI B I= = =  the disease-free 

equilibrium (DFE) of the system (1) – (6) is given by 

 

( )0 0 0 0,0, , 0, ,0h h FS R S =     (7) 

 

where  0

2

,h h
h
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+
     0
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+
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0
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h

N
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

 
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+
 

Next-generation matrix analysis 

We start our analysis by determining the basic reproduction number, 
0.R  0R  

is mathematically defined as the spectral radius of the next-generation matrix. To 

compute the basic reproduction number, we use the well-known method of Van den 
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Driessche and Watmough (Van den Driessche and Watmough, 2002). From system 

(1), 
hI  and B  are directly related to the infection. We have 

3

4

,

0

h

h h h he h h h h F h F

h

dI
B

I I IS S I S Idt
B

I B BdB

dt

    


  

 
   + ++ +   = − =  +    − + +   
   

−F V   

 

where F denotes the rate of appearance of new infections and V denotes the 

rate of transfer of individuals into or out of each population set. Then we have 

( )

1 1

2

2

2
0 0

e h
h hh

h

S
SI B

BF

I B





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3
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.
0h h

h

I B
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I B

  

  

  
    
 = =  
    
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
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− +

V V
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 The next-generation matrix is defined as 1,FV −  where F  and V  are the 

Jacobian matrices given by 

  ( )0F  ( )2 2

0

,

0

h h h h

h

h e

h

N N 



 

   

 
 + +=
 
  

( )0V  3

4

0
,

h  

  

 
=  


+

− 

+

+
   (8) 

 

where 
0  is DFE defined in Equation (7).  By spectral radius, we have 

( )
( )

( )( )( )
41

0

2 3 4

( )
.

h h h e

h h

N
R FV

     


       

−
+ +

= =
+ + + +

   (9) 

 

Consequently, based on the work in the paper proposed by Van den Driessche and 

Watmough (Van den Driessche and Watmough, 2002), we immediately have the 

following result: 

Theorem 1.  The disease-free equilibrium of the model is locally asymptotically 

stable if 
0 1R  , and unstable if 

0 1.R   

To study the global asymptotic stability of the DFE, we will apply the 

following result introduced by Castillo-Chavez et al (Chavez and Huang, 2002). 

Lemma 1.  Consider a model system written in the form 

   ( )1
1 2,

dX
F X X

dt
=  

   ( ) ( )2
1 2 1, , ,0 0

dX
G X X G X

dt
= =  
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where 
1

mX R  denotes (its components) the number of uninfected individuals and 

2

mX R  denotes (its components) the number of infected individuals including 

latent, infections, etc.; ( )*

0 1 ,0X X=  denotes the disease-free equilibrium of the 

system. Also assume the conditions (H1) and (H2) below:  

(H1)  For ( )1
1,0

dX
F X

dt
=  is globally asymptotically stable.  

(H2)  ( ) ( ) ( )1 2 2 1 2 1 2
ˆ ˆ, , , , 0G X X AX G X X G X X= −   for  ( )1 2,X X  , where 

the Jacobian ( ) ( )*

2 1/ ,0A G X G X=    is an M-matrix (the off diagonal elements of 

A  are nonnegative) and   is the region where the model makes biological sense. 

Then the DFE   is globally asymptotically stable. 

Theorem 2.  The DFE of the model (1) is globally asymptotically stable. 

Proof.  We adopt the notations in Lemma1 and verify the conditions (H1) and (H2). 

In our model, ( )1 , , ,h h FX S R S=  ( )2 , ,h FX I B I=  and ( )*

1 0 0 0, , .h h FX S R S=  We note that 

the system is linear and its solution can be easily found as: 

( )1
1 2 2

1

3

2

( )

, .

h h h h h h F h F h h h

h h h

F F F F h F F

B
N eS S I S I S S

B

I R

N I

dX
F X X

S S

S I
dt

     


   

   

 
 
 

= = + 


− − − − −
+

+ −

−



−


+ 




       (10) 

We have 

  

( )1
1 2

2

1

,0 .

h h h

h

h h

h h

F F F F F

N S S
d

S R

N S S

X
F X

dt

  

 

  

− −

−

 
 

= =
 
 −  −

 

It follows from solving these differential equations that ( ) 2( )

1

2

,hh h
h

t

h

N
CS t e

 

 

− +
+

+
=   

( ) 2
h

h

t
C eR t

−
=  and ( ) 1( )

1

3 .F

h

tF F

F

N
CS t e  

 

− +
+

+
=  Thus, ( ) 0 ,h hS t S→  ( ) 0h hR t R→  and  

( ) 0 ,F FS t S→  as .t →  Hence, ( )*

1 0 0 0, ,h h FX S R S=  is globally asymptotically stable 

for the subsystem (5).  

Now, note that 

( ) ( )1 2 2 1 2
ˆ, ,G X X AX G X X= −     (11) 
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where ( )*

1

2

,0 .
G

A X
X


=


  Substituting into (11) gives, ( ) ( )1 2
ˆ , 0,0 0.

T
G X X =   We 

complete the proof.          

 

Endemic equilibrium 

When the disease is appears in the population, 0,hI   there may be several 

critical points where 0,hI   which are the endemic equilibrium points of the 

model. 

   

*
* 2

1

 ,h h h
h

N a I
S

a

 −
=

 

*
*

3

,hI
B

a


= *

*

1

 ,F F
F

F F h

N
S

I



  
=

+ +
 

*
*

*

1

  .F h F
F

F F h

I N
I

I



  
=

+ +
   

Hence, our endemic equilibrium point are ( )**

1

* * *, , ,h h hS I B R = and ( )**

2

*, .F FS I =  

 

Local stability 

Next, we proceed to analyze the stability properties of the endemic 

equilibrium. First we prove the following result regarding the local stability. 

Theorem 3.  The positive endemic equilibrium 
*

1  is locally asymptotically stable. 

Proof.  The Jacobian matrix of the system (1) – (4) at 
*

1x =  is given by 

 

( )
( ) *

2

**

3

4

* * ( ), .

0 )

,

(

h h h

h h h h h

P S Q

PB QS SJ I

  

   

  

− 
 

=  
 
  

− + − −

− + +

− +

 

 

Where 
*

* *

* h h F F

B
P e I I

B
  


= + +

+
 and 

*

* 2
.

( )

e hS
Q

B




=

+
 The characteristic 

polynomial of ( )*

1J   is 

  
( )* *

10 det J I  = −
   

         3 2

1 02a a a  = + + +         

where      
*

2 4 3 4 3 40 ( ) ( )( ) ( ) ( )( ),( )h h h h ha S Q P               = + + + + − + − + + + +

* *

4 3 4 2 3

2

1

4 3

( )( ) ( ) ( )( )

( ( ))( ) ( ),

( )h h h h h h h

h h

a S Q S

P P

              

      

= + + + − + − + + + + −

+ + + + + + +
  



 

 

 

21  

*

2 32 ( ) ( ).h h h ha P S     = + + + + + −  

  

Next, consider characteristic equation above by using the Routh-Hurwitz Criterion 

in the form of polynomial of degree 3. Therefore, the endemic equilibrium point is 

stable if 0 1 20, 0, 0a a a    and 1 2 0.a a a  Thus, 
*

1  is locally asymptotically 

stable. We complete the proof.         

 

RESULTS: OPTIMAL CONTROL 

Now we turn to the more general model with time-dependent controls ( )1 ,t  

( )2 ,t  ( )3 t  and ( )4 .t  We consider the system on a time interval [0,T]. The 

function ( )1 ,t  ( )2 ,t  ( )3 t  and ( )4 t  are assumed to be at least Lebesgue 

measurable on [0,T]. The control set is defined as  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 2 3 4 1 1max

2 2max 3 3max 4 4max

, , , 0 ,

0 ,0 ,0

t t t t t

t t t

     

     

   
 =  

       
 

where 
1max ,  2max ,  3max  and 

4max  denote the upper bounds for the eliminating the 

flies, vaccination, treatment and bacteria, respectively. The bounds reflect practical 

limitation on the maximum rate of control in given time period. The presence of 

time-dependent controls makes the analysis of our system difficult. In fact, the 

disease dynamics now depend on the evolution of control. In what follows we 

perform an optimal control study on this problem. We aim to minimize the total 

number of infections and the costs of control over the time interval  0,  ,T  i.e.; 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )1,2,3,4

2 2

11 1 12 1 21 2 22 2

2 20
31 3 32 3 41 4 42 4

min
T F h

h

I t c t S t c t c t S t c t
dt

c t I t c t c t B t c t

   

   

 + + + +
 

+ + + +  
  (7) 

Here, the parameters 11,c  12 ,c  21,c  22 ,c  31,c  32 ,c  41c  and 42c with appropriate 

units, define the appropriate costs associated with these controls. Quadratic terms are 

introduced to indicate nonlinear costs potentially arising at high intervention level. 

The minimization process is subject to the differential equation of our system, which 

are now referred to as the state equations. Correspondingly, the unknown variables 

,FS ,hS hI  and B  are now called the state variables, in contrast to the control 

variables ( )1 ,t  ( )2 ,t  ( )3 t  and ( )4 .t  Our goal is to determine the optimal 

controls ( )*

1 ,t  ( )*

2 ,t  ( )*

3 t  and ( )*

4 ,t  so as to minimize the objective 

functional in (7). 

NU. International Journal of Science 2021; 18(1): 15-27



 

22 NU. International Journal of Science 2021; 18(1): 15-27 

 Let us first define the adjoint functions , , ,
h h FS I B S     and 

FI  associated 

with the state equations for , , ,h h FS I B S  and ,FI  respectively. We then form the 

Hamitonian, ,H  by multiplying state equation, and adding each of these products to 

the integrand of the objective functional. As a result, we obtain 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )( )

2 2

11 1 12 1 21 2 22 2 31 3

2 2

32 3 4

2

3

4

1 4 42 4

( )

(

h

h

F

h h h h h h F h F h h h

h h h h F h F h h h

h F F F F

F h h

S

I

B S

H I t c t S t c t c t S t c t c t I t

c t c t B t c t

t
B

N eS S I S I S S
B

B
eS S I S I I I

B

I B B N

t

t I

   

  

 


     


    

 

 

 









= + + + + +

+ + +

 
+  

 

 
+  



− − − − −
+

+ + − + −
+

− − − +



+ + ( )( )

( )

1)

.
F

h F F

F h F F FI

S S

I I

t

S



 

−

−+

 

 

To achieve the optimal control, the adjoint  functions must satisfy ,hS

h

d H

dt S

 
= −


  

,hI

h

d H

dt I

 
= −


,Bd H

dt B

 
= −


FS

F

d H

dt S

 
= −


 and FI

F

d H

dt I

 
= −


 with transversality 

conditions (or final time conditions): ( ) 0,
hS T =  ( ) 0,

hI T =  ( ) 0,B T =  
( ) 0

FS T =  and ( ) 0.
FI T =  The characterization of the optimal control ( )*

1 ,t  

( )*

2 ,t  ( )*

3 t  and ( )*

4 t  are based on the conditions 

1

0,
H




=


 

2

0,
H




=

 3

0
H




=


 

and 

4

0,
H




=


 respectively, subject to the constraints 

1 1max0 ,    
2 2max0 ,    

3 3max0     and 
4 4max0 .    Specifically, we have 

 

   ( ) ( )( )( )*

1 1 1maxmax 0,min , ,t t  =   ( ) ( )( )( )*

2 2 2maxmax 0,min , ,t t  =  
    

   ( ) ( )( )( )*

3 3 3maxmax 0,min , ,t t  =   and 
 ( ) ( )( )( )*

4 4 4maxmax 0,min , ,t t  =   

where 
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( )
( ) ( )11

1

12

,
2

Fs Fc S t
t

c




−
=  ( )

( ) ( )21

2

22

,
2

hs hc S t
t

c




−
=  ( )

( ) ( )31

3

322

hI hc I t
t

c




−
=  and 

( )
( ) ( )41

4

42

.
2

B c B t
t

c




−
=   

 

Due to the presence of both initial conditions (for the state equations) and 

final time conditions (for the adjoint equations), and the fact that most models of our 

interest are nonlinear, the optimal control system has to be solved numerically. We 

apply the forward-backward sweep method  to solve the optimality system in an 

iterative manner. The control is then updated with the new values of the state and 

adjoint solutions, and the process is repeated until the solutions converge. 

 

We make use the initial conditions ( )0 9990,hS =  ( )0 10,hI =  ( )0 0,hR =  

( )0 0,B =  ( )0 99900FS =  and ( )0 100.FI =  The simulations were carried out 

using the parameter values in Table1. 

Table1:  Symbols and Parameter values . 

Parameter Value Reference Parameter Value Reference 

hN
 

10,000  R.L.M. Neilan 

et al. (2010) 
  10  R.L.M. Neilan 

et al. (2010) 

h  
43.5 day-1 R.L.M. Neilan 

et al. (2010) 
e  

0.075  R.L.M. Neilan 

et al. (2010) 

  
610  R.L.M. Neilan 

et al. (2010) 
h  

0.00011  R.L.M. Neilan 

et al. (2010) 

  5  R.L.M. Neilan 

et al. (2010) 

  30  R.L.M. Neilan 

et al. (2010) 

FN
 100,000  Estimated 

F  0.00001  Estimated 

F  
0.4  Estimated    
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Figure 1:  shows the human infection levels predicted by the model for 

the scenario with control (dashed line) and the scenario without control 

(solid line). It is clearly seen that the infection level has been reduced due 

optimal control. 

 

 
Figure 2: shows how the level of the infected house flies  population  by 

the model for the scenario with control (dashed line) and the scenario 

without control (solid line).  It is clearly seen that the infection of house 

flies  population level has been reduced due optimal control. 
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We first consider the following set of values for the cost parameters  

11 0.00001,c =  12 1,c =  21 4,c =  22 4,c =  31 2,c =  32 2,c =  41 0.00001,c =  
42 1,c =  

max1 0.7, =  max 2 0.4, =  max3 0.7, =  and 
max 4 0.7. =  Figure1 shows the 

infection curves for the model with controls (dashed line) and that without the 

optimal controls (solid line). It is clearly seen the infection level has been reduced 

due to the incorporation of vaccine and other controls. Figure 2 shows that with 

elimination control in the model can reduce the number of infected flies that carry 

Vibrio Cholerae. Figures 3 show the optimal control proflier of each control. These 

plots are very useful to plan for deployments of the treatment in order to control 

cholera outbreaks. 

 
 

  

a)  Rate of eliminating the flies controls b)  Rate of  vaccination controls 

  

c)  Rate of treatment controls d)  Rate of bacteria controls 

Figure 3: Rate of controls. 
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 CONCLUSIONS 

  

This study has presented a mathematical model of cholera which takes into 

account and analyzes both house flies,  bacterium and human populations. In order 

to uncover the effects of the flies elimination rate,  the bacteria elimination rate, the 

vaccinations rate and the medical treatment of infected people on the spread of the 

disease, and in order to find ways to control the outbreak of cholera, an optimal 

control study was carried out. The equilibrium analysis has been conducted. The 

stability of the disease-free equilibrium point and the endemic equilibrium point are 

controlled by the threshold number. If 0R  is less than one, then the disease dies out 

and the disease-free equilibrium is stable. If 0R  is greater than one, then the disease 

persists and the disease-free equilibrium is unstable. In conclusion, the numerical 

simulations and theories presented here have shown that attentive treatment  of 

infected people, vaccination, thorough elimination of flies and bacteria can 

significantly reduce the number of people infected and harmed by cholera. We to 

show in Table1 and Table2. 
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